Advertisement

Competitive hydrogen-bonding and halogen-bonding interactions in the dimerization of hypobromous acid (HOBr) molecules

  • Zhongbo Wang
  • Beichen Shi
  • Nengzhi Jin
  • Zhifei ZhangEmail author
Original Research

Abstract

The dimerization of hypobromous acid molecules was investigated using MP2 method with aug-cc-pVTZ basis set. Six different configurations were found as the local minima, corresponding to different dimers with one hydrogen bond or one halogen bond, or cyclic structures formed via simultaneously two hydrogen bonds or two halogen bonds, or one hydrogen bond along with one halogen-bonding-like interaction. These dimers exhibit different binding energies. The dimers with one O–H···O hydrogen bond and the cyclic one with an O–H···O HB and an O–Br···O interaction as well as another one with two O–H···Br hydrogen bonds are much stronger than the dimer with one O–Br···O halogen bond, while the dimer with one O–Br···Br halogen bond is even weaker. The topological property of the hydrogen bond or halogen bond in each dimer was assessed by AIM analysis. NBO analysis was employed to reveal the important roles of the intermolecular donor-acceptor orbital interactions and the charge transfer in each dimer. EDA analyses suggest that the electrostatic, exchange, polarization, and dispersion interactions are the attractive forces in stabilizing the complex, while the Pauli term is the repulsive force.

Keywords

Hydrogen bond Halogen bond Hypobromous acid Atoms in molecules Natural bond orbital 

Notes

Acknowledgments

The technical support from the Super Computing Center of Gansu Province is acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aakeröy CB, Fasulo M, Schultheiss N, Desper J (2007). J Am Chem Soc 129:13772–13773PubMedGoogle Scholar
  2. 2.
    Alkorta I, Blanco F, Deya PM, Elguero J, Estarellas C, Frontera A, Quinonero D (2010). Theor Chem Accounts 126:1–14Google Scholar
  3. 3.
    Alkorta I, Rozas I, Elguero J (1998). Chem Soc Rev 27:163–170Google Scholar
  4. 4.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004). Proc Natl Acad Sci U S A 101:16789–16794PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cincic D, Friscic T, Jones W (2008). Chem Eur J 14:747–753PubMedGoogle Scholar
  6. 6.
    Cincic D, Friscic T, Jones W (2008). J Am Chem Soc 130:7524–7525PubMedGoogle Scholar
  7. 7.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000). Angew Chem Int Ed 39:1782–1792Google Scholar
  8. 8.
    Derossi S, Brammer L, Hunter CA, Ward MD (2009). Inorg Chem 48:1666–1677PubMedGoogle Scholar
  9. 9.
    Desiraju GR, Steiner T (1999) The Weak Hydrogen Bond. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Fourmigué M (2009). Curr Opin Solid State Mater Sci 13:36–45Google Scholar
  11. 11.
    Fox DB, Liantonio R, Metrangolo P, Pilati T, Resnati G (2004). J Fluor Chem 125:271–281Google Scholar
  12. 12.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  13. 13.
    Kryachko ES (2006) Hydrogen bonding-new insights. Springer, DordrechtGoogle Scholar
  14. 14.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008). Angew Chem Int Ed 47:6114–6127Google Scholar
  15. 15.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005). Acc Chem Res 38:386–395PubMedGoogle Scholar
  16. 16.
    Metrangolo P, Resnati G (2001). Chem Eur J 7:2511–2519PubMedGoogle Scholar
  17. 17.
    Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007). J Polym Sci A 45:1–14Google Scholar
  18. 18.
    Riley KE, Hobza P (2008). J Chem Theory Comput 4:232–242PubMedGoogle Scholar
  19. 19.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009). J Chem Theory Comput 5:155–163PubMedGoogle Scholar
  20. 20.
    Scheiner S (1997) Hydrogen Bonding. Oxford University Press, New YorkGoogle Scholar
  21. 21.
    Shirman T, Arad T, van der Boom ME (2010). Angew Chem Int Ed 49:926–929Google Scholar
  22. 22.
    Voth AR, Hays FA, Ho PS (2008). Proc Natl Acad Sci U S A 104:6188–6193Google Scholar
  23. 23.
    Legon AC (1999). Angew Chem Int Ed 38:2686–2714Google Scholar
  24. 24.
    Zhou P-P, Qiu W-Y, Liu S, Jin N-Z (2011). Phys Chem Chem Phys 13:7408–7018PubMedGoogle Scholar
  25. 25.
    Clark T (2017). Faraday Discuss 203:9–27PubMedGoogle Scholar
  26. 26.
    Clark T, Hennemann M, Murray JS, Politzer P (2007). J Mol Model 13:291–296PubMedGoogle Scholar
  27. 27.
    Grabowski SJ (2017). Phys Chem Chem Phys 19:29742–29759PubMedGoogle Scholar
  28. 28.
    McDowell SAC (2014). Chem Phys 598:1–4Google Scholar
  29. 29.
    Murray JS, Lane P, Clark T, Politzer P (2007). J Mol Model 13:1033–1038PubMedGoogle Scholar
  30. 30.
    Murray JS, Lane P, Politzer P (2008). Int J Quantum Chem 108:2770–2781Google Scholar
  31. 31.
    Murray JS, Lane P, Politzer P (2009). J Mol Model 15:723–729PubMedGoogle Scholar
  32. 32.
    Nziko VDPN, Scheiner S (2016). Phys Chem Chem Phys 18:3581–3590Google Scholar
  33. 33.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007). J Mol Model 13:305–311PubMedGoogle Scholar
  34. 34.
    Politzer P, Murray JS (2002). Theor Chem Accounts 108:134–142Google Scholar
  35. 35.
    Politzer P, Murray JS, Clark T (2010). Phys Chem Chem Phys 12:7748–7757PubMedGoogle Scholar
  36. 36.
    Politzer P, Murray JS, Clark T (2013). Phys Chem Chem Phys 15:11178–11189PubMedGoogle Scholar
  37. 37.
    Politzer P, Murray JS, Clark T (2015). Top Curr Chem 358:19–42PubMedGoogle Scholar
  38. 38.
    Politzer P, Murray JS, Clark T, Resnati G (2017). Phys Chem Chem Phys 19:32166–32178PubMedGoogle Scholar
  39. 39.
    Politzer P, Murray JS, Concha MC (2007). J Mol Model 13:643–650PubMedGoogle Scholar
  40. 40.
    Politzer P, Murray JS, Concha MC (2008). J Mol Model 14:659–665PubMedGoogle Scholar
  41. 41.
    Politzer P, Murray JS, Lane P (2007). Int J Quantum Chem 107:3046–3052Google Scholar
  42. 42.
    Wang H, Wang W, Jin WJ (2016). Chem Rev 116:5072–5104PubMedGoogle Scholar
  43. 43.
    Alkorta I, Blanco F, Solimannejad M, Elguero J (2008). J Phys Chem A 112:10856–10863PubMedGoogle Scholar
  44. 44.
    Bouchmella K, Boury B, Dutremez SG, van der Lee A (2007). Chem Eur J 13:6130–6138PubMedGoogle Scholar
  45. 45.
    Li Q, Xu X, Liu T, Jing B, Li W, Cheng J, Gong B, Sun J (2010). Phys Chem Chem Phys 12:6837–6843PubMedGoogle Scholar
  46. 46.
    Metrangolo P, Resnati G (2008). Science 321:918–919PubMedGoogle Scholar
  47. 47.
    Yung YL, Pinto JP, Watson RT, Sander SP (1980). J Atmos Sci 37:339–353Google Scholar
  48. 48.
    Poulet G, Pirre M, Maguin F, Ramaroson R, Le Bras G (1992). Geophys Res Lett 19:2305–2308Google Scholar
  49. 49.
    Garcia RR, Solomon SJ (1994). Geophys Res 99:12937–12951Google Scholar
  50. 50.
    Panek JJ, Berski S (2008). Chem Phys Lett 467:41–45Google Scholar
  51. 51.
    Solimannejad M, Alkorta I, Elguero J (2008). Chem Phys Lett 454:201–206Google Scholar
  52. 52.
    Solimannejad M, Pejov L (2005). J Phys Chem A 109:825–831PubMedGoogle Scholar
  53. 53.
    Solimannejad M, Scheiner S (2008). J Phys Chem A 112:4120–4124PubMedGoogle Scholar
  54. 54.
    Zhao Q, Feng D, Sun Y, Hao J, Cai Z (2011). J Mol Model 17:1935–1939PubMedGoogle Scholar
  55. 55.
    Jing B, Li Q, Li R, Gong B, Liu Z, Li W, Cheng J, Sun J (2011). Comput Theor Chem 963:417–421Google Scholar
  56. 56.
    Blanco F, Alkorta I, Solimannejad M, Elguero J (2009). J Phys Chem A 113:3237–3244PubMedGoogle Scholar
  57. 57.
    Li QZ, Zhao JL, Jing B, Li R, Li WZ, Cheng JB (2011). J Comput Chem 32:2432–2440PubMedGoogle Scholar
  58. 58.
    Li Q, Li H, Gong J, Li W, Cheng J (2012). Int J Quantum Chem 112:2429–2434Google Scholar
  59. 59.
    Jeziorski B, Moszynski R, Szalewicz K (1994). Chem Rev 94:1887–1930Google Scholar
  60. 60.
    Møller C, Plesset MS (1934). Phys Rev 46:618–622Google Scholar
  61. 61.
    Dunning JTH (1989). J Chem Phys 90:1007–1023Google Scholar
  62. 62.
    Boys SF, Bernardi F (1970). Mol Phys 19:553–566Google Scholar
  63. 63.
    Chalasinski G, Szczesniak M (2000). Chem Rev 100:4227–4252PubMedGoogle Scholar
  64. 64.
    Davidson ER, Feller D (1986). Chem Rev 86:681–696Google Scholar
  65. 65.
    Raghavachari K, Trucks GW, Pople JA (1989). Chem Phys Lett 157:479–483Google Scholar
  66. 66.
    Reed AE, Weinhold F (1983). J Chem Phys 78:4066–4073Google Scholar
  67. 67.
    Reed AE, Weinhold F (1985). J Chem Phys 1985(83):1736–1740Google Scholar
  68. 68.
    Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735–746Google Scholar
  69. 69.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HR, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JRJ, Peralta A, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision C.01. Gaussian, Inc., WallingfordGoogle Scholar
  70. 70.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  71. 71.
    Keith TA (2017) AIMAll (Version 17.11.14), TK Gristmill Software, Overland Park. aim.tkgristmill.com
  72. 72.
    Lu T, Chen F (2012). J Comput Chem 33:580–592PubMedGoogle Scholar
  73. 73.
    Su P, Li H (2009). J Chem Phys 131:014102–014115PubMedGoogle Scholar
  74. 74.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery Jr JA (1993). J Comput Chem 14:1347–1363Google Scholar
  75. 75.
    Pauling L (1960) The nature of the chemical bond. Cornell University Press, New YorkGoogle Scholar
  76. 76.
    Koch U, Popelier PLA (1995). J Phys Chem 99:9747–9754Google Scholar
  77. 77.
    Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004). J Phys Chem A 108:10865–10872Google Scholar
  78. 78.
    Popelier PLA (1998). J Phys Chem A 102:1873–1878Google Scholar
  79. 79.
    Zhou P-P, Qiu W-Y (2009). ChemPhysChem 10:1847–1858PubMedGoogle Scholar
  80. 80.
    Zhang Z, Shen J, Jin N, Chen L, Yang Z (2012). Comput Theor Chem 999:48–54Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PharmacyNorth China University of Science and TechnologyTangshanPeople’s Republic of China
  2. 2.The Super Computing Center of Gansu ProvinceLanzhouPeople’s Republic of China

Personalised recommendations