Advertisement

A DFT study of the degradation mechanism of anticancer drug carmustine in an aqueous medium

  • Saba HadidiEmail author
  • Farshad Shiri
  • Mohammadsaleh Norouzibazaz
Original Research
  • 15 Downloads

Abstract

Density functional theory calculations were carried out to study the degradation mechanism of anticancer drug carmustine in an aqueous medium. The calculations indicate that the overall activation barrier for the degradation process is in the order of path A > path C (2H2O) > path C (0H2O) > path C (1H2O) > path H7 > path H8 > path B of proposed degradation pathways. In addition, the activation barrier is lower in all cases for the trans-mode of carmustine, and this isomer can proceed to any of the degradation paths with a faster kinetic than of the cis isomer.

Keywords

Carmustine Degradation mechanism Aqueous medium, DFT study 

Notes

Acknowledgments

The authors gratefully acknowledge the Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran, and the Research and Computational Lab of Theoretical Chemistry and Nano Structures of Razi University Kermanshah-Iran.

Compliance with ethical standards

This study complied with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11224_2019_1285_MOESM1_ESM.docx (758 kb)
ESM1 The energy profile for all the degradation pathways in initial conformer of cis as well as the Cartesian coordinates of both the cis and trans forms of carmustine and also all the transition states. (DOCX 757 kb)

References

  1. 1.
    Lukas RV, Boire A, Nicholas MK (2007) Emerging therapies for malignant glioma. Expert Rev Anticancer Ther 7(sup1):S29–S36PubMedGoogle Scholar
  2. 2.
    Carter SK, Schabel Jr FM, Broder LE, Johnston TP (1973) 1, 3-bis (2-chloroethyl)-1-nitrosourea (BCNU) and other nitrosoureas in cancer treatment: a review. In. Adv Cancer Res 16. Elsevier:273–332Google Scholar
  3. 3.
    Naghipur A, Ikonomou MG, Kebarle P, Lown JW (1990) Mechanism of action of (2-haloethyl) nitrosoureas on DNA: discrimination between alternative pathways of DNA base modification by 1, 3-bis (2-fluoroethyl)-1-nitrosourea by using specific deuterium labeling and identification of reaction products by HPLC/tandem mass spectrometry. J Am Chem Soc 112(8):3178–3187Google Scholar
  4. 4.
    Puyo S, Montaudon D, Pourquier P (2014) From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol 89(1):43–61PubMedGoogle Scholar
  5. 5.
    Bodell WJ (2003) Repair of DNA alkylation products formed in 9L cell lines treated with 1-(2-chloroethyl)-1-nitrosourea. Mutat Res/Fundam Mol Mechan Mutagen 522(1):85–92Google Scholar
  6. 6.
    Schabel JF (1976) Nitrosoureas: a review of experimental antitumor activity. Cancer Treat Rep 60(6):665–698PubMedGoogle Scholar
  7. 7.
    Miyagami M, Tsubokawa T, Tazoe M, Kagawa Y (1990) Intra-arterial ACNU chemotherapy employing 20% mannitol osmotic blood-brain barrier disruption for malignant brain tumors. Neurol Med Chir 30(8):582–590Google Scholar
  8. 8.
    Bindra JS, Lednicer D (1993) Chronicles of drug discovery, vol 1. John Wiley & Sons, HobokenGoogle Scholar
  9. 9.
    Boice Jr JD, Greene MH, Killen Jr JY, Ellenberg SS, Keehn RJ, McFadden E, Chen TT, Fraumeni Jr JF (1983) Leukemia and preleukemia after adjuvant treatment of gastrointestinal cancer with semustine (methyl-CCNU). N Engl J Med 309(18):1079–1084PubMedGoogle Scholar
  10. 10.
    Zackheim HS, Feldmann RJ, Lindsay C, Maibach HI (1977) Percutaneous absorption of I, 3-bis (2-chloroethyl)-I-nitrosourea (BCNU, carmustine) in mycosis fungoides. Br J Dermatol 97(1):65–67Google Scholar
  11. 11.
    Walker MD, Alexander Jr E, Hunt WE, MacCarty CS, Mahaley Jr MS, Mealey Jr J, Norrell HA, Owens G, Ransohoff J, Wilson CB (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial. J Neurosurg 49(3):333–343PubMedGoogle Scholar
  12. 12.
    Walker MD, Green SB, Byar DP, Alexander Jr E, Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Mahaley Jr MS, Mealey Jr J (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303(23):1323–1329PubMedGoogle Scholar
  13. 13.
    Ludlum DB (1997) The chloroethylnitrosoureas: sensitivity and resistance to cancer chemotherapy at the molecular level. Cancer Investig 15(6):588–598Google Scholar
  14. 14.
    Zhuang L, Gao J, Zeng Y, Yu F, Zhang B, Li M, Derendorf H, Liu C (2011) HPLC method validation for the quantification of lomustine to study pharmacokinetics of thermosensitive liposome-encapsulated lomustine containing iohexol for CT imaging in C6 glioma rats. Eur J Drug Metab Pharmacokinet 36(2):61–69PubMedGoogle Scholar
  15. 15.
    Kramer RA, Boyd MR, Dees JH (1986) Comparative nephrotoxicity of 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea (MeCCNU) and chlorozotocin: functional-structural correlations in the Fischer 344 rat. Toxicol Appl Pharmacol 82(3):540–550PubMedGoogle Scholar
  16. 16.
    Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, Peña-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA repair 3(11):1389–1407PubMedGoogle Scholar
  17. 17.
    Ducastelle T, Raguenez-Viotte G, Fouin-Fortunet H, Matysiak M, Hemet J, Fillastre J (1988) The hepatotoxicity of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) in rats. Cancer Chemother Pharmacol 22(2):153–162PubMedGoogle Scholar
  18. 18.
    Kristal O, Rassnick KM, Gliatto JM, Northrup NC, Chretin JD, Morrison-Collister K, Cotter SM, Moore AS (2004) Hepatotoxicity associated with CCNU (lomustine) chemotherapy in dogs. J Vet Intern Med 18(1):75–80PubMedGoogle Scholar
  19. 19.
    Wheeler GP, Chumley S (1967) Alkylating activity of 1, 3-bis (2-chloroethyl)-1-nitrosourea and related compounds. J Med Chem 10(2):259–261PubMedGoogle Scholar
  20. 20.
    Barranco S, Humphrey R (1971) The effects of bleomycin on survival and cell progression in Chinese hamster cells in vitro. Cancer Res 31(9):1218–1223PubMedGoogle Scholar
  21. 21.
    Bhuyan B, Scheidt L, Fraser T (1972) Cell cycle phase specificity of antitumor agents. Cancer Res 32(2):398–407PubMedGoogle Scholar
  22. 22.
    Tobey RA, Crissman HA (1975) Comparative effects of three nitrosourea derivatives on mammalian cell cycle progression. Cancer Res 35(2):460–470PubMedGoogle Scholar
  23. 23.
    Le Blanc GA, Waxman DJ (1989) Interaction of anticancer drugs with hepatic monooxygenase enzymes. Drug Metab Rev 20(2–4):395–439PubMedGoogle Scholar
  24. 24.
    Lemoine A, Lucas C, Ings R (1991) Metabolism of the chloroethylnitrosoureas. Xenobiotica 21(6):775–791PubMedGoogle Scholar
  25. 25.
    Ramirez YP, Weatherbee JL, Wheelhouse RT, Ross AH (2013) Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals 6(12):1475–1506PubMedPubMedCentralGoogle Scholar
  26. 26.
    Pratt WB, Ensminger WD, Ruddon RW (1994) The anticancer drugs. Oxford University Press, USAGoogle Scholar
  27. 27.
    Neese F, Wennmohs F (2013) ORCA (3.0. 2)-An ab initio. DFT and semiempirical SCF-MO package,(Max-Planck-Institute for Chemical Energy Conversion Stiftstr 34–36, 45470 Mulheim ad Ruhr, Germany)Google Scholar
  28. 28.
    Xu X, Goddard WA (2004) The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci 101(9):2673–2677Google Scholar
  29. 29.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652Google Scholar
  30. 30.
    Hratchian HP, Schlegel HB (2005) Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. Theory and applications of computational chemistry. Elsevier, Amsterdam, pp 195–249Google Scholar
  31. 31.
    Pacchioni G, Bagus PS (1992) Metal-phosphine bonding revisited.. sigma.-Basicity,. pi.-acidity, and the role of phosphorus d orbitals in zerovalent metal-phospine complexes. Inorg Chem 31(21):4391–4398Google Scholar
  32. 32.
    Novoa JJ, Aullon G, Alemany P, Alvarez S (1995) On the bonding nature of the M. cntdot.. cntdot.. cntdot. M interactions in dimers of square-planar Pt (II) and Rh (I) complexes. J Am Chem Soc 117(27):7169–7171Google Scholar
  33. 33.
    Aarset K, Hagen K, Stølevik R, Christian SP (1995) Molecular structure and conformational composition of 1-chlorobutane, 1-bromobutane, and 1-Iodobutane as determined by gas-phase electron diffraction and ab initio calculations. Struct Chem 6(3):197–205Google Scholar
  34. 34.
    Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129Google Scholar
  35. 35.
    Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65(2):239–245Google Scholar
  36. 36.
    Pascual-ahuir J-L, Silla E, Tunon I (1994) GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J Comput Chem 15(10):1127–1138Google Scholar
  37. 37.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255(4–6):327–335Google Scholar
  38. 38.
    Mennucci B, Cances E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101(49):10506–10517Google Scholar
  39. 39.
    Cammi R (2009) Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives. J Chem Phys 131(16):164104PubMedGoogle Scholar
  40. 40.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094Google Scholar
  41. 41.
    Laskar PA, Ayres JW (1977) Degradation of carmustine in aqueous media. J Pharm Sci 66(8):1073–1076PubMedGoogle Scholar
  42. 42.
    Laskar PA, Ayres JW (1977) Degradation of carmustine in mixed solvent and nonaqueous media. J Pharm Sci 66(8):1076–1078.  https://doi.org/10.1002/jps.2600660806 PubMedGoogle Scholar
  43. 43.
    Nassar AF, Wisnewski A, King I (2016) Biotransformations and rearrangement of laromustine. Drug Metab Dispos:dmd 116:069823Google Scholar
  44. 44.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592PubMedGoogle Scholar
  45. 45.
    Huang Y, Rong C, Zhang R, Liu S (2017) Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. J Mol Model 23(1):3PubMedGoogle Scholar
  46. 46.
    Allred AL, Rochow EG (1958) A scale of electronegativity based on electrostatic force. J Inorg Nucl Chem 5(4):264–268Google Scholar
  47. 47.
    Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54(9):3570–3582Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Inorganic Chemistry Department, Faculty of ChemistryRazi UniversityKermanshahIran
  2. 2.Medical Biology Research Center (MBRC)Kermanshah University of Medical SciencesKermanshahIran
  3. 3.Nano Science and Technology Research CenterRazi UniversityKermanshahIran
  4. 4.Department of Organic Chemistry, Faculty of ChemistryRazi UniversityKermanshahIran

Personalised recommendations