Ellagitannin derivatives and some conjugated metabolites: aqueous-DMSO proton affinities and acidity constants

  • Asiyeh Shahraki
  • Ali EbrahimiEmail author
Original Research


Twenty-nine ellagitannin derivatives and ellagic acid (EA) metabolites have been chosen to calculate the aqueous and DMSO acidity constants (pKa) and proton affinities (PA) as criterions for estimating antioxidant activity. The calculations have been performed using density functional theory (DFT) and MP2 methods in conjugation with SMD continuum model. The pKa values calculated with the MP2 method are in agreement with the experimental pKa values of EA with low percentage errors. The results show significant differences in the acidic content of several OH phenolic groups of each metabolite. A reliable relationship is observed between the pKa (also PA) values and the minimum of electrostatic potential (Vmin) in the vicinity of acidic sites. The OH group located at the position 5 of urolithin M5 (UM5) is the most acidic site through the effect of intramolecular hydrogen bonding. The glucuronide substituent increases the acidity of metabolites in water and DMSO solvents. Isourolithin A3-glucuronide is the most acidic metabolites among the methyl and glucuronide-conjugated metabolites in both solvents. According to the results, the EA metabolites are good lipophilic antioxidant, as well as EA itself.


Ellagic acid Conjugated metabolite Acidity constant Intramolecular hydrogen bond Electrostatic potential 


Funding information

We thank the University of Sistan and Baluchestan for financial supports and Computational Quantum Chemistry Laboratory for computational facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1284_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1737 kb)


  1. 1.
    Mazzone G, Toscano M, Russo N (2013) Density functional predictions of antioxidant activity and UV spectral features of nasutin a, isonasutin, ellagic acid, and one of its possible derivatives. J Agric Food Chem 61:9650–9657CrossRefGoogle Scholar
  2. 2.
    Clifford MN, Scalbert A (2000) Ellagitannins – nature, occurrence and dietary burden. J Sci Food Agric 80:1118–1125CrossRefGoogle Scholar
  3. 3.
    Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP (2010) Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin a, on wnt signaling. J Agric Food Chem 58:3965–3969CrossRefGoogle Scholar
  4. 4.
    Vrhovsek U, Giongo L, Mattivi F, Viola R (2008) A survey of ellagitannin content in raspberry and blackberry cultivars grown in Trentino (Italy). Eur Food Res Technol 226:817–824CrossRefGoogle Scholar
  5. 5.
    Häkkinen S, Heinonen M, Kärenlampi SO, Mykkänen HM, Ruuskanen J, Törrönen R (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353CrossRefGoogle Scholar
  6. 6.
    García-Villalba R, Espín JC, Aaby K, Alasalvar C, Heinonen M, Jacobs G, Voorspoels S, Koivumäki T, Kroon PA, Pelvan E, Saha S, Tomás-Barberán FA (2015) Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. J Agric Food Chem 63:6555–6566CrossRefGoogle Scholar
  7. 7.
    González-Barrio R, Truchado P, Ito H, Espín JC, Tomás-Barberán FA (2011) UV and MS identification of urolithins and nasutins, the bioavailable metabolites of ellagitannins and ellagic acid in different mammals. J Agric Food Chem 59:1152–1162CrossRefGoogle Scholar
  8. 8.
    Tomás-Barberán FA, García-Villalba R, González-Sarrías A, Selma MV, Espín JC (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62:6535–6538CrossRefGoogle Scholar
  9. 9.
    Cerdá B, Periago P, Espín JC, Tomás-Barberán FA (2005) Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds. J Agric Food Chem 53:5571–5576CrossRefGoogle Scholar
  10. 10.
    García-Villalba R, Beltrán D, Espín JC, Selma MV, Tomás-Barberán FA (2013) Time course production of urolithins from ellagic acid by human gut microbiota. J Agric Food Chem 61:8797–8806CrossRefGoogle Scholar
  11. 11.
    Cerdá B, Espín JC, Parra S, Martínez P, Tomás-Barberán FA (2004) The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolized into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur J Nutr 43:205–220CrossRefGoogle Scholar
  12. 12.
    Espín JC, González-Barrio R, Cerdá B, López-Bote C, Rey AI, Tomás-Barberán FA (2007) Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J Agric Food Chem 55:10476–10485CrossRefGoogle Scholar
  13. 13.
    Seeram NP, Henning SM, Zhang Y, Suchard M, Li Z, Heber D (2006) Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr 136:2481–2485CrossRefGoogle Scholar
  14. 14.
    Bialonska D, Kasimsetty SG, Khan SI, Ferreira D (2009) Urolithins, intestinal microbial metabolites of pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. J Agric Food Chem 57:10181–10186CrossRefGoogle Scholar
  15. 15.
    Heber D, Schulman RN, Seeram NP (2006) Pomegranates: ancient roots to modern medicine. Taylor & Francis, Boca RatonGoogle Scholar
  16. 16.
    Mertens-Talcott SU, Jilma-Stohlawetz P, Rios J, Hingorani L, Derendorf H (2006) Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J Agric Food Chem 54:8956–8961CrossRefGoogle Scholar
  17. 17.
    Seeram NP, Aronson WJ, Zhang Y, Henning SM, Moro A, Lee RP, Sartippour M, Harris DM, Rettig M, Suchard MA, Pantuck AJ, Belldegrun A, Heber D (2007) Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem 55:7732–7737CrossRefGoogle Scholar
  18. 18.
    Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589CrossRefGoogle Scholar
  19. 19.
    Henning SM, Seeram NP, Zhang Y, Li L, Gao K, Lee RP, Wang DC, Zerlin A, Karp H, Thames G, Kotlerman J, Li Z, Heber D (2010) Strawberry consumption is associated with increased antioxidant capacity in serum. J Med Food 13:116–122CrossRefGoogle Scholar
  20. 20.
    Priyadarsini KI, Khopde SM, Kumar SS, Mohan H (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50:2200–2206CrossRefGoogle Scholar
  21. 21.
    Galano A, Marquez MF, Pérez- González A (2014) Ellagic acid: an unusually versatile protector against oxidative stress. Chem Res Toxicol 27:904–918CrossRefGoogle Scholar
  22. 22.
    Zhang J, Xiong Y, Peng B, Gao H, Zhou Z (2011) Density functional study on the bioactivity of ellagic acid, its derivatives and metabolite. Comput Theor Chem 963:148–153CrossRefGoogle Scholar
  23. 23.
    Kallio T, Kallio J, Jaakkola M, Mäki M, Kilpeläinen P, Virtanen V (2013) Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions. J Agric Food Chem 61:10720–10729CrossRefGoogle Scholar
  24. 24.
    Tiwari MK, Mishra PC (2013) Modeling the scavenging activity of ellagic acid and its methyl derivatives towards hydroxyl, methoxy, and nitrogen dioxide radicals. J Mol Model 19:5445–5456CrossRefGoogle Scholar
  25. 25.
    Marković Z, Milenković D, Ðorović J, Marković JMD, Lučić B, Amić D (2013) A DFT and PM6 study of free radical scavenging activity of ellagic acid. Monatsh Chem - Chem Mon 144:803–812CrossRefGoogle Scholar
  26. 26.
    Nugroho A, Rhim TJ, Choi MY, Choi JS, Kim YC, Kim MS, Park HJ (2014) Simultaneous analysis and peroxynitrite-scavenging activity of galloylated flavonoid glycosides and ellagic acid in Euphorbia supine. Arch Pharm Res 37:890–898CrossRefGoogle Scholar
  27. 27.
    Ambigaipalan P, Camargo A, Shahidi F (2016) Phenolic compounds of pomegranate by-products (outer skin, mesocarp, divider membrane) and their antioxidant activities. J Agric Food Chem 64:6584–6604CrossRefGoogle Scholar
  28. 28.
    Azofeifa G, Quesada S, Boudard F, Morena M, Cristol JP, Pérez AM, Vaillant F, Michel A (2013) Antioxidant and anti-inflammatory in vitro activities of phenolic compounds from tropical highland blackberry (rubus adenotrichos). J Agric Food Chem 61:5798–5805CrossRefGoogle Scholar
  29. 29.
    Sunthankar SR, Yatkar SKK (1938) Electrometric titration of tannic acids part II. Electrometric titration of gallic and gallotannic acids. J Indian Inst Sci 21A:189–208Google Scholar
  30. 30.
    Queimada AJ, Mota FL, Pinho SP, Macedo EA (2009) Solubilities of biologically active phenolic compounds: measurements and modeling. J Phys Chem B 113:3469–3476CrossRefGoogle Scholar
  31. 31.
    Press RE, Hardcastle D (1969) Some physico-chemical properties of ellagic acid. J Appl Chem 19:247–251CrossRefGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  33. 33.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  34. 34.
    Lee C, Yang W, Parr RG (1988) Development of the colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  35. 35.
    Leopoldini M, Russo N, Toscano M (2006) Gas and liquid phase acidity of natural antioxidants. J Agric Food Chem 54:3078–3085CrossRefGoogle Scholar
  36. 36.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  37. 37.
    Trummal A, Lipping L, Kaljurand I, Koppel IA, Leito I (2016) Acidity of strong acids in water and dimethyl sulfoxide. J Phys Chem A 120:3663–3670CrossRefGoogle Scholar
  38. 38.
    Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry4rd edn. Wiley-VCH, WeinheimGoogle Scholar
  39. 39.
    Marcus Y, Kamlet MJ, Taft RW (1988) Linear solvation energy relationships. Standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents. J Phys Chem 92:3613–3622CrossRefGoogle Scholar
  40. 40.
    Grimme S (2004) Accurate description of van der waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473CrossRefGoogle Scholar
  41. 41.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154123CrossRefGoogle Scholar
  42. 42.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-Electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  43. 43.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  44. 44.
    Biegler-könig F, Schönbohm J, Bayles D (2001) AIM2000—a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559CrossRefGoogle Scholar
  45. 45.
    Lu T, Chen F (2012) Multiwfn: a multifunctional Wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  46. 46.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in Formamide conformational analysis. J Comput Chem 11:361–373CrossRefGoogle Scholar
  47. 47.
    Rimarčík J, Lukeš V, Klein E, Ilčin M (2010) Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Comput Theor Chem 952:25–30Google Scholar
  48. 48.
    Atkins PW (1998) Physical chemistry6th edn. Oxford University Press, OxfordGoogle Scholar
  49. 49.
    Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960CrossRefGoogle Scholar
  50. 50.
    Granucci G, Hynes JT, Millié P, Tran-Thi TH (2000) A theoretical investigation of excited-state acidity of phenol and cyanophenols. J Am Chem Soc 122:12243–12253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Computational Quantum Chemistry LaboratoryUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations