Advertisement

Migrating simulation of novel high-energy SMX-based propellants based on molecular dynamics

  • Ke Wang
  • Ning Liu
  • Jun-qiang Li
  • Han Wang
  • Xiao-long Fu
  • Huan Li
  • Xue-zhong Fan
  • Wei-qiang Pang
Review Article
  • 1 Downloads

Abstract

Three 2,3-bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate (SMX)–based propellants were firstly reported, then the specific impulses of SMX-based propellants were calculated by the Energy Calculation Star program. Meanwhile, the migration property of the plasticizers and SMX was investigated by molecular dynamic method, and the main results as follows: the theoretical specific impulses of three SMX-based propellants all overpass 280 s, which suggests that they have the potential to be high-energy propellants. The migrating property of plasticizers in SMX-based propellants and ethylene propylene diene monomer (EPDM) insulation all decrease in the order Bu-NENA> BTTN> TMETN. Meanwhile, the plasticizers much easier migrate in EPDM insulation than in SMX-based propellants, and TMETN is significantly more difficult to migrate than the other. The glass transition temperatures (Tg) of GAP/Bu-NENA/Al/SMX, GAP/BTTN/Al/SMX, and GAP/TMETN/Al/SMX systems are 282.3 K, 278.1 K, and 287.6 K, respectively. Due to lower Tg of EPDM, the EPDM/plasticizer systems have no obvious glass transition between 233 and 323 K. The SMX is almost more difficult to migrate than plasticizers in SMX-based propellants while temperature is above 273 K, whereas it is contrary under 273 K.

Keywords

Molecular dynamic Migration 2,3-Bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate (SMX) Ethylene propylene diene monomer (EPDM) Glass transition 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lempert D, Nechiporenko G, Manelis G (2011) Energetic performances of solid composite propellants[J]. Cent Eur J Energetic Mater 8(1):25–38Google Scholar
  2. 2.
    Gottlieb L, Bar S (2003) Migration of plasticizer between bonded propellant interfaces[J]. Propell Explos Pyrot: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials 28(1):12–17CrossRefGoogle Scholar
  3. 3.
    Li S, Liu Y, Tuo X et al (2008) Mesoscale dynamic simulation on phase separation between plasticizer and binder in NEPE propellants[J]. Polymer 49(11):2775–2780CrossRefGoogle Scholar
  4. 4.
    Grythe KF, Hansen FK (2007) Diffusion rates and the role of diffusion in solid propellant rocket motor adhesion[J]. J Appl Polym Sci 103(3):1529–1538CrossRefGoogle Scholar
  5. 5.
    Chavez DE, Hiskey MA, Naud DL et al (2008) Synthesis of an energetic nitrate ester[J]. Angew Chem 120(43):8431–8433CrossRefGoogle Scholar
  6. 6.
    Fischer N, Fischer D, Klapötke TM et al (2012) Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate[J]. J Mater Chem 22(38):20418–20422CrossRefGoogle Scholar
  7. 7.
    Fuqiang B, Junliang Y, Bozhou W et al (2011) Synthesis, crystal structure and properties of 2, 3-bis (hydroxymethyl)-2,3-dinitro-1,4-butanedioltetranitrate[J]. Chin J Org Chem 31(11):1893–1900Google Scholar
  8. 8.
    Reese DA, Son SF, Groven LJ (2014) Composite propellant based on a new nitrate ester[J]. Propellants Explos Pyrotech 39(5):684–688CrossRefGoogle Scholar
  9. 9.
    HUO B, HE J-x, REN X-t, CAO Y-l (2017) Synthesis, crystal morphology control of SEM and its compatibility of HTPB propellant. Chin J of Energetic Mater 25(4):348–352Google Scholar
  10. 10.
    Sizov VA, Pleshakov DV, Asachenko AF et al (2018) Synthesis and study of the thermal and ballistic properties of SMX [J]. Cent Eur J Energetic Mater 15(1):30–46CrossRefGoogle Scholar
  11. 11.
    Huang Z, Nie H, Zhang Y et al (2012) Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation[J]. J Hazard Mater 229:251–257CrossRefGoogle Scholar
  12. 12.
    Reese DA, Groven LJ, Son SF (2014) Formulation and characterization of a new nitroglycerin-free double base propellant[J]. Propellants Explos Pyrotech 39(2):205–210CrossRefGoogle Scholar
  13. 13.
    Li H-X, Qiang H-F, Li X-Q et al (2012) Measurement of diffusion coefficient of plasticizer in HTPB propellant [J]. J Solid Rocket Technol 35(3):387–390Google Scholar
  14. 14.
    Bei Q, Pan Q, Tang Q-f et al (2018) Molecular dynamics simulation and experimental study on migration of nitric Ester in NEPE propellant[J]. Chin J Energetic Mater 41(3):278–284Google Scholar
  15. 15.
    Material Studio 8.0[C] //Acceryls Inc.: San Diego, 2014Google Scholar
  16. 16.
    Ma X, Zhao F, Ji G et al (2008) Computational study of structure and performance of four constituents HMX-based composite material[J]. J Mol Struct THEOCHEM 851(1–3):22–29CrossRefGoogle Scholar
  17. 17.
    Lu Y, Shu Y, Liu N et al (2017) Theoretical simulations on the glass transition temperatures and mechanical properties of modified glycidyl azide polymer[J]. Comput Mater Sci 139:132–139CrossRefGoogle Scholar
  18. 18.
    Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale[J]. Ann Phys 369(3):253–287CrossRefGoogle Scholar
  19. 19.
    Karasawa N, Goddard III WA (1989) Acceleration of convergence for lattice sums[J]. J Phys Chem 93(21):7320–7327CrossRefGoogle Scholar
  20. 20.
    Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature[J]. J Chem Phys 72(4):2384–2393CrossRefGoogle Scholar
  21. 21.
    Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath[J]. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  22. 22.
    Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Phys Rev 159(1):98CrossRefGoogle Scholar
  23. 23.
    Liu QL, Huang Y (2006) Transport behavior of oxygen and nitrogen through organasilicon-containing polystyrenes by molecular simulation[J]. J Phys Chem B 110(35):17375–17382CrossRefGoogle Scholar
  24. 24.
    Haesslin HW (1985) Dimethylsiloxane-ethylene oxide block copolymers, 2. Preliminary results on dilute solution properties[J]. Die Makromolekulare Chemie Banner 186(2):357–366CrossRefGoogle Scholar
  25. 25.
    YU Z-f, FU X-l, YU H-j et al (2015) Mesoscopic molecular simulation of migration of NG and BTTN in polyurethane [J]. Chin J Energetic Mater 23(9):858–864Google Scholar
  26. 26.
    Li M, Zhao FQ, Xu SY et al (2013) Comparison of three kinds of energy calculation programs in formulation design of solid propellants[J]. Chin J Explos Propellants 36(3):73–77Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ke Wang
    • 1
  • Ning Liu
    • 1
  • Jun-qiang Li
    • 1
  • Han Wang
    • 1
  • Xiao-long Fu
    • 1
  • Huan Li
    • 1
  • Xue-zhong Fan
    • 1
  • Wei-qiang Pang
    • 1
  1. 1.Xi’an Modern Chemistry Research InstituteXi’anChina

Personalised recommendations