Structural and electronic properties of adsorbed nucleobases on Si-doped hexagonal boron nitride nanoflake: a computational study

  • Bahar Borhani
  • Mohsen MohsenniaEmail author
  • Mehdi Shakourian-FardEmail author
Original Research


Effect of doping on surface reactivity and molecular adsorption mechanism is a key feature for many applications, including molecular sensing, molecular recognition, and catalysis. The interaction of nucleobases (NBs) with the silicon (Si)-doped hexagonal boron nitride nanoflake (Si(B)-hBNNF and Si(N)-hBNNF) surfaces has been studied using electronic structure methods. A comparison between the binding energy (∆Eb, adsorption strength) of NBs on Si(B)-hBNNF, Si(N)-hBNNF, and hBNNF surfaces showed that the doping of hBNNF surface with Si atom significantly increases the binding energy values as follows: Si(B)-hBNNF…NB > Si(N)-hBNNF…NB > hBNNF…NB. Our results revealed that the adsorption of NBs on the Si-doped hBNNF surfaces arises through the electrostatic/partial covalent Si…N(O) interactions as well as noncovalent interactions, improving the field emission properties of the surfaces. The work function (ɸ), HOMO-LUMO energy gap (Eg), and chemical hardness (η) of the Si-doped hBNNF surfaces were decreased, resulting in increasing of the chemical reactivity of the adsorption complexes. Time-dependent density functional theory (TDDFT) calculations revealed that the main absorption bands respectively at 269.64 nm and 283.17 nm for the Si(B)-hBNNF and Si(N)-hBNNF surfaces are red-shifted due to the NBs adsorption. In addition, the appearance of new peaks in the visible region of the absorption spectra of the Si(B)-hBNNF…NB and Si(N)-hBNNF…NB complexes, indicates their promising applicability in the optical sensing of NBs and light-emitting technology.


Silicon doping Adsorption Boron nitride nanoflake Density functional theory DNA nucleobase 


Funding information

This study received partial financial support from the Research Council of University of Kashan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1280_MOESM1_ESM.doc (34 kb)
ESM 1 This material contains noncovalent interaction (NCI) plots, the results of AIM analysis, density of states (DOSs), reactivity parameters and TDDFT results. (DOC 34 kb)


  1. 1.
    Lipp A, Schwetz KA, Hunold KJJECS (1989) Hexagonal boron nitride: fabrication, properties and applications. J Eur Ceram Soc 5(1):3–9CrossRefGoogle Scholar
  2. 2.
    Hu M, Yin J, Zhang C, Yu Z, LJJoAP S (2011) Electronic structures and optical properties of hexagonal boron nitride under hydrostatic pressures. J Appl Phys 109(7):073708CrossRefGoogle Scholar
  3. 3.
    Singh SK, Neek-Amal M, Costamagna S, Peeters FJPRB (2013) Thermomechanical properties of a single hexagonal boron nitride sheet. Phys Rev B 87(18):184106CrossRefGoogle Scholar
  4. 4.
    Wang J, Ma F, Sun MJRA (2017) Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7(27):16801–16822CrossRefGoogle Scholar
  5. 5.
    Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D, Wang X, Jiang X, Bando Y, DJAn G (2014) Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACSNano 8(6):6123–6130Google Scholar
  6. 6.
    Cui Z, Martinez AP, Adamson DHJN (2015) PMMA functionalized boron nitride sheets as nanofillers. Nanoscale 7(22):10193–10197CrossRefGoogle Scholar
  7. 7.
    Sukhorukova IV, Zhitnyak IY, Kovalskii AM, Matveev AT, Lebedev OI, Li X, Gloushankova NA, Golberg D, Shtansky DVJA (2015) Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS Appl Mater Interfaces 7(31):17217–17225interfacesCrossRefGoogle Scholar
  8. 8.
    Khan AF, Brownson DA, Randviir EP, Smith GC, CEJAc B (2016) 2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine. Anal Chem 88(19):9729–9737CrossRefGoogle Scholar
  9. 9.
    Li Q, Luo W, Su L, Chen J, Chou K-C, Hou XJRA (2016) An amperometric glucose enzyme biosensor based on porous hexagonal boron nitride whiskers decorated with Pt nanoparticles. RSC Adv 6(95):92748–92753CrossRefGoogle Scholar
  10. 10.
    Lee TH, Kim K, Kim G, Park HJ, Scullion D, Shaw L, Kim M-G, Gu X, Bae W-G, Santos EJJCM (2017) Chemical vapor-deposited hexagonal boron nitride as a scalable template for high-performance organic field-effect transistors. Chem Mater 29(5):2341–2347CrossRefGoogle Scholar
  11. 11.
    Zhou Z, Hu Y, Wang H, Xu Z, Wang W, Bai X, Shan X, XJSr L (2013) DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Sci Rep 3:3287CrossRefGoogle Scholar
  12. 12.
    Weng Q, Wang X, Wang X, Bando Y, Golberg DJCSR (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45(14):3989–4012CrossRefGoogle Scholar
  13. 13.
    Zhang L, Wang XJN (2016) DNA sequencing by hexagonal boron nitride nanopore: a computational study. Nanomaterials 6(6):111CrossRefGoogle Scholar
  14. 14.
    Zhan Y, Yan J, Wu M, Guo L, Lin Z, Qiu B, Chen G, Wong K-yJT (2017) Boron nitride nanosheets as a platform for fluorescence sensing. Talanta 174:365–371CrossRefGoogle Scholar
  15. 15.
    Lin Q, Zou X, Zhou G, Liu R, Wu J, Li J, Duan WJPCCP (2011) Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study. Phys Chem Chem Phys 13(26):12225–12230CrossRefGoogle Scholar
  16. 16.
    Ding N, Chen X, C-ML W, Li HJPCCP (2013) Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking. Phys Chem Chem Phys 15(26):10767–10776CrossRefGoogle Scholar
  17. 17.
    Lee J-H, Choi Y-K, Kim H-J, Scheicher RH, Cho J-HJTJPCC (2013) Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations. J Phys Chem 117(26):13435–13441Google Scholar
  18. 18.
    Anota EC, Tlapale Y, Villanueva MS, JRJJomm M (2015) Non-covalent functionalization of hexagonal boron nitride nanosheets with guanine. J Mol Model 21(8):215CrossRefGoogle Scholar
  19. 19.
    Shakourian-Fard M, Heydari H, Kamath GJC (2017) Defect-based modulation of optoelectronic properties for biofunctionalized hexagonal boron nitride nanosheets. ChemPhysChem 18(17):2328–2335CrossRefGoogle Scholar
  20. 20.
    Huang B, Lee HJPRB (2012) Defect and impurity properties of hexagonal boron nitride: a first-principles calculation. Phys Rev B 86(24):245406CrossRefGoogle Scholar
  21. 21.
    Y-j L, Gao B, Xu D, Wang H-m, Zhao J-xJPLA (2014) Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: electronic, magnetic properties, and reactivity. Phys Lett A 378(40):2989–2994CrossRefGoogle Scholar
  22. 22.
    Yu S, Li L, Lai Z, Hao J, Zhang KJMRE (2017) A coupling effects of vacancy and Al (Ga, in) dopant on electronic structures of hexagonal boron nitride monolayer. Mater Res Express 4(11):116302CrossRefGoogle Scholar
  23. 23.
    Chen S, Li P, Xu S, Pan X, Fu Q, Bao XJJMCA (2018) Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J Mater Chem A 6(4):1832–1839CrossRefGoogle Scholar
  24. 24.
    Ying J, Zhang X, Yin Z, Tan H, Zhang S, YJJoAP F (2011) Electrical transport properties of the Si-doped cubic boron nitride thin films prepared by in situ cosputtering. J Appl Phys 109(2):023716CrossRefGoogle Scholar
  25. 25.
    Cho YJ, Kim CH, Kim HS, Park J, Choi HC, Shin H-J, Gao G, Kang HSJCM (2008) Electronic structure of Si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation. Chem Mater 21(1):136–143CrossRefGoogle Scholar
  26. 26.
    Xu S, Fan Y, Luo J, Zhang L, Wang W, Yao B, LJApl A (2007) Phonon characteristics and photoluminescence of bamboo structured silicon-doped boron nitride multiwall nanotubes. Appl Phys Lett 90(1):013115CrossRefGoogle Scholar
  27. 27.
    Xu SF, Xu D (2013) The structure and light emitting of silicon-doped boron nitride nanotubes. Advanced Materials Research. Trans Tech Publ, Zurich, pp 1898–1901Google Scholar
  28. 28.
    Darwish AA, Fadlallah MM, Badawi A, Maarouf AAJASS (2016) Adsorption of sugars on Al-and Ga-doped boron nitride surfaces: a computational study. Appl Surf Sci 377:9–16CrossRefGoogle Scholar
  29. 29.
    Heidari H, Afshari S, Habibi EJRA (2015) Sensing properties of pristine, Al-doped, and defected boron nitride nanosheet toward mercaptans: a first-principles study. RSC Adv 5(114):94201–94209CrossRefGoogle Scholar
  30. 30.
    Lin S, Ye X, Huang JJPCCP (2015) Can metal-free silicon-doped hexagonal boron nitride nanosheets and nanotubes exhibit activity toward CO oxidation? Phys Chem Chem Phys 17(2):888–895CrossRefGoogle Scholar
  31. 31.
    Esrafili MD, Nematollahi PJSM (2017) Potential of Si-doped boron nitride nanotubes as a highly active and metal-free electrocatalyst for oxygen reduction reaction: a DFT study. Synth Met 226:129–138CrossRefGoogle Scholar
  32. 32.
    Esrafili MDJCPL (2018) NO reduction by CO molecule over Si-doped boron nitride nanosheet: a dispersion-corrected DFT study. Chem Phys Lett 695:131–137CrossRefGoogle Scholar
  33. 33.
    Mudedla S, Balamurugan K, Subramanian VJTJPCC (2014) Computational study on the interaction of modified nucleobases with graphene and doped graphenes. J Phys Chem 118(29):16165–16174Google Scholar
  34. 34.
    Mudedla SK, Balamurugan K, Kamaraj M, Subramanian VJPCCP (2016) Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties. Phys Chem Chem Phys 18(1):295–309CrossRefGoogle Scholar
  35. 35.
    Alinezhad H, Ganji MD, Soleymani E, Tajbakhsh MJASS (2017) A comprehensive theoretical investigation about the bio-functionalization capability of single walled CNT, BNNT and SiCNT using DNA/RNA nucleobases. Appl Surf Sci 422:56–72CrossRefGoogle Scholar
  36. 36.
    Umadevi D, Sastry GNJTJPCL (2011) Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J Phys Chem 2(13):1572–1576Google Scholar
  37. 37.
    Xu Z, Meher BR, Eustache D, Wang YJJMG, Modelling (2014) Insight into the interaction between DNA bases and defective graphenes: covalent or non-covalent. J Mol Graph Model 47:8–17CrossRefGoogle Scholar
  38. 38.
    Chandra Shekar S, Swathi RJTJPCC (2014) Stability of nucleobases and base pairs adsorbed on graphyne and graphdiyne. J Phys Chem 118(8):4516–4528Google Scholar
  39. 39.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2010) GAUSSIAN 09, Rev. C. 01, D. 01. Gaussian. Inc, Wallingford CTGoogle Scholar
  40. 40.
    Ullah S, Denis PA, Sato FJC (2017) Triple-doped monolayer graphene with boron, nitrogen, aluminum, silicon, phosphorus, and sulfur. ChemPhysChem 18(14):1864–1873CrossRefGoogle Scholar
  41. 41.
    Mapasha RE, Molepo MP, Andrew RC, Chetty NJJPCM (2016) Defect charge states in Si doped hexagonal boron-nitride monolayer. J Phys Condens Matter 28(5):055501CrossRefGoogle Scholar
  42. 42.
    Gupta SK, He H, Banyai D, Si M, Pandey R, Karna SPJN (2014) Effect of Si doping on the electronic properties of BN monolayer. Nanoscale 6(10):5526–5531CrossRefGoogle Scholar
  43. 43.
    Boys SF, Bernardi FJMP (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566CrossRefGoogle Scholar
  44. 44.
    Reed AE, Curtiss LA, Weinhold FJCR (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  45. 45.
    Bader R, Biegler-König F, Schönbohm J (2002) AIM2000—a program to analyze and visualize atoms in molecules, version. University of Applied Sciences, Bielefield, Germany, p 2Google Scholar
  46. 46.
    Bader RF (1990) Atoms in molecules: a quantum theory, vol 22, international series of monographs on chemistry. Oxford University Press, OxfordGoogle Scholar
  47. 47.
    Roy RK, Saha SJARSC (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep C 106:118–162CrossRefGoogle Scholar
  48. 48.
    Geerlings P, De Proft F, Langenaeker WJC (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874CrossRefGoogle Scholar
  49. 49.
    Parr RG, Pearson RGJJACS (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516CrossRefGoogle Scholar
  50. 50.
    Koopmans TJP (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1(1–6):104–113CrossRefGoogle Scholar
  51. 51.
    Parthasarathi R, Subramanian V, Sathyamurthy NJTJPCA (2006) Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem 110(10):3349–3351CrossRefGoogle Scholar
  52. 52.
    Roohi H, Jahantab MJPCR (2017) Sensitivity of perfect and stone-Wales defective BNNTs toward NO molecule: a DFT/M06-2X approach. Phys Chem Res 5(1):167–183Google Scholar
  53. 53.
    Zaboli M, Raissi HJMS (2017) DFT and MD study of adsorption sensitivity of aluminium phosphide nanotube towards some air pollutant gas molecules. Mol Simul 43(9):675–690CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryUniversity of KashanKashanIran
  2. 2.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  3. 3.University of KashanKashanIran
  4. 4.Department of Chemical EngineeringBirjand University of TechnologyBirjandIran

Personalised recommendations