Advertisement

Cell cycle inhibition, apoptosis, and molecular docking studies of the novel anticancer bioactive 1,2,4-triazole derivatives

  • Javad Ghanaat
  • Mohammad A. KhalilzadehEmail author
  • Daryoush Zareyee
  • Mohammadreza Shokouhimehr
  • Rajender S. Varma
Original Research
  • 22 Downloads

Abstract

Several 3-alkylsulfanyl-1,2,4-triazole derivatives were synthesized and their relevant structures confirmed based on their elemental analysis and nuclear magnetic resonance. The anticancer activity of all the derivatives was evaluated for A549, MCF7, and SKOV3 cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay wherein compound 5e demonstrated significant anti-proliferative activities against all cell lines whereas 5b and 5e showed efficient anti-proliferative actions in SKOV3 cell line having half maximal inhibitory concentration (IC50) values of 0.81 and 0.53 μM, respectively. Furthermore, compound 5e was found to drive remarkable cell cycle arrest at the G2/M phase for SKOV3 cell lines in a concentration-dependent behavior. Molecular docking studies performed with these derivatives validated them as appropriate candidates for further studies of their potential anticancer activity.

Keywords

1,2,4-Triazoles Anticancer activity Molecular docking Anticancer agents 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11224_2019_1453_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1779 kb)

References

  1. 1.
    Chinthala Y, Thakur S, Tirunagari S, Chinde S, Domatti AK, Arigari NK, Srinivas KVNS, Alam S, Jonnala KK, Khan F, Ashok T, Grover P (2015). Eur J Med Chem 93:564–573PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Zugazagoitia J, Gudedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016). Clin Ther 38:1551–1566PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Le QV, Wu Y, Yang G, Jang HW, Shokouhimehr M, Oh YK (2019). Asian J Pharm Sci 14:16–29CrossRefGoogle Scholar
  4. 4.
    Nasir RB, Varma RS (2012). Chem Commun 48:5853–5855CrossRefGoogle Scholar
  5. 5.
    Huang SD, Li Y, Shokouhimehr M (2010) Gadolinium containing prussian blue nanoparticles as nontoxic MRI contrast agents having high relaxivity. U.S. Pat. 20100254Google Scholar
  6. 6.
    Kumar D, Reddy VB, Varma RS (2009). Tetrahedron Lett 50:2065–2068CrossRefGoogle Scholar
  7. 7.
    Ruddarraju RR, Murugulla AC, Kotla R, Tirumalasetty MCB, Wudayagiri R, Donthabakthuni S, Maroju R (2017). Med Chem Commun 8:176–183CrossRefGoogle Scholar
  8. 8.
    Holla BS, Veerendra B, Shivananda MK, Poojary B (2003). Eur J Med Chem 38:759–767CrossRefGoogle Scholar
  9. 9.
    Turan-Zitouni G, Kaplancikli ZA, Yildiz MT, Chevallet P, Kaya D (2005). Eur J Med Chem 40:607–6013PubMedCrossRefGoogle Scholar
  10. 10.
    Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Sokovic M, Glamocilija J, Ciric A (2008). Bioorg Med Chem 16:1150–1161PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ozdemir A, Turan-Zitouni G, Kaplancikli ZA, Chevallet PJ (2007). Enzyme Inhib Med Chem 22:511–516CrossRefGoogle Scholar
  12. 12.
    Chahal MK, Dar TA, Sankar M (2018). New J Chem 42:10059–10066CrossRefGoogle Scholar
  13. 13.
    Tozkoparan B, Gokhan N, Aktay G, Yesilada E, Ertan M (2000). Eur J Med Chem 35:743–750PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ned DH, Jack RRJ (1980). Heterocycl Chem 17:1087–1088CrossRefGoogle Scholar
  15. 15.
    Chen J, Sun XY, Chai KY, Song MS, Quan ZS (2007). Bioorg Med Chem 15:6775–6781PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Polya JB (1955). Nature 176:1175–1176CrossRefGoogle Scholar
  17. 17.
    Zahran F, Abdel-Latif F, Sayed A, Shaban R, Keshta A (2013). Int J Biol Pharm Res 4:261–270CrossRefGoogle Scholar
  18. 18.
    Li D, Zhang N, Dai L, Yang Z, Tao Z (2016). Appl Organomet Chem 30:346–353CrossRefGoogle Scholar
  19. 19.
    Xu F, Yang Z, Ke Z, Xi L, Yan Q, Yang W, Zhu L, Lin F, Lv W, Wu H, Wang J, Li H (2016). Bioorg Med Chem Lett 26:4580–4586PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jarosław S, Aleksandra G, Beata Z, Anna K (2015). Molecules 21:41–57CrossRefGoogle Scholar
  21. 21.
    Radwan A, Aboul-fadl T, Al-dhfyan A, Abdel-mageeda W (2014). Asian J Chem 26:8145–8150CrossRefGoogle Scholar
  22. 22.
    Aytac P, Durmaz I, Houston D, Cetin-Atalay R, Tozkoparan B (2016). Bioorg Med Chem 24:858–872PubMedCrossRefGoogle Scholar
  23. 23.
    Kleemann A, Engel J (1999) Pharmaceutical substances. Thieme, StuttgartGoogle Scholar
  24. 24.
    Khaleghi F, Jantan I, Din LB, Yaacob WA, Khalilzadeh MA, Bukhari SNA (2014). J Nat Med 68:351–357PubMedCrossRefGoogle Scholar
  25. 25.
    Rajabi M, Hossaini Z, Khalilzadeh MA, Datta S, Halder M, Mousa SA (2015). J Photochem Photobiol B 148:66–72PubMedCrossRefGoogle Scholar
  26. 26.
    Rajabi M, Khalilzadeh MA, Mehrzad J (2012). DNA Cell Biol 31:128–134PubMedCrossRefGoogle Scholar
  27. 27.
    Rajabi M, Khalilzadeh MA, Tavakolinia F, Signorelli P, Ghidoni R, Santaniello E (2012). DNA Cell Biol 31:783–789PubMedCrossRefGoogle Scholar
  28. 28.
    Tavakolinia F, Baghipour T, Khalilzadeh MA, Hossaini Z, Rajabi M (2012). Nucleic Acids Ther 22:265–270CrossRefGoogle Scholar
  29. 29.
    Meerloo J, Kaspers GJ, Cloos J (2011). Methods Mol Biol 731:237–245PubMedCrossRefGoogle Scholar
  30. 30.
    Browne LJ, Gude C, Rodriguez H, Steele RE, Bhatnager AJ (1991). J Med Chem 34:725–736PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Carter GP, Harjani JR, Li L, Pitcher NP, Nong Y, Riley TV, Williamson DA, Stinear TP, Baell JB, Howden BP (2018). Antimicrob Chemother 73:1562–1569CrossRefGoogle Scholar
  32. 32.
    Polucci P, Magnaghi P, Angiolini M, Asa D, Avanzi N, Badari A, Bertrand J, Casale E, Cauteruccio S, Cirla A, Cozzi L, Galvani A, Jackson PK, Liu Y, Magnuson S, Malgesini B, Nuvoloni S, Orrenius C, Riccardi Sirtori F, Riceputi L, Rizzi S, Trucchi B, O’Brien T, Isacchi A, Donati D, D’Alessio R (2013). J Med Chem 56:437PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kolodina AA, Lesin AV (2009). Russ J Org 45:139CrossRefGoogle Scholar
  34. 34.
    Kaplancikli ZA, Turan-Zitouni G, Chevallet P (2005). J Enzyme Inhib Med Chem 20:179PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Zhao PL, Chen P, Li Q, Hu MJ, Diao PC, Pan ES, You WW (2016). Bioorg Med Chem Lett 26:3679PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zhang Q, Peng Y, Wang XI, Keenan SM, Arora S, Welsh WJ (2007). J Med Chem 50:749–754PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS (2009). J Comput Chem 30:2785–2797PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kaur J, Kaur B, Singh P (2018). Bioorg Med Chem Lett 28:129–141PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Botta M, Armaroli S, Castagnolo D, Fontana G, Pera P, Bombardell E (2007) J Bioorg Med Chem. Lett 17:1579–1583Google Scholar
  40. 40.
    Li YH, Zhang B, Yang HK, Li Q, Diao PC, You WW, Zhao PL (2017). Eur J Med Chem 125:1098–1106PubMedCrossRefGoogle Scholar
  41. 41.
    Romagnoli R, Baraldi PG, Salvador MK, Prencipe F, Bertolasi V, Cancellieri M, Brancale A, Hamel E, Castagliuolo I, Consolaro F, Porcù E, Basso G, Viola G (2014). J Med Chem 57:6795–6808PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, Reinelt S, Lane H, Steinmetz MO (2014). J Mol Biol 426:1848–1860PubMedCrossRefGoogle Scholar
  43. 43.
    Kamal A, Srikanth PS, Vishnuvardhan MVPS, Bharath Kumar G, Suresh Babu K, Hussaini SMA, Kapure JS, Alarifi A (2016). Bioorg Chem 65:126–136PubMedCrossRefGoogle Scholar
  44. 44.
    Guggilapu SD, Guntuku L, Srinivasa Reddy T, Nagarsenkar A, Sigalapalli DK, Naidu VGM, Bhargava SK, Babu Bathini N (2017). Eur J Med Chem 138:83–95PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  2. 2.Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea
  3. 3.Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacky University in OlomoucOlomoucCzech Republic

Personalised recommendations