Cell cycle inhibition, apoptosis, and molecular docking studies of the novel anticancer bioactive 1,2,4-triazole derivatives
- 22 Downloads
Abstract
Several 3-alkylsulfanyl-1,2,4-triazole derivatives were synthesized and their relevant structures confirmed based on their elemental analysis and nuclear magnetic resonance. The anticancer activity of all the derivatives was evaluated for A549, MCF7, and SKOV3 cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay wherein compound 5e demonstrated significant anti-proliferative activities against all cell lines whereas 5b and 5e showed efficient anti-proliferative actions in SKOV3 cell line having half maximal inhibitory concentration (IC50) values of 0.81 and 0.53 μM, respectively. Furthermore, compound 5e was found to drive remarkable cell cycle arrest at the G2/M phase for SKOV3 cell lines in a concentration-dependent behavior. Molecular docking studies performed with these derivatives validated them as appropriate candidates for further studies of their potential anticancer activity.
Keywords
1,2,4-Triazoles Anticancer activity Molecular docking Anticancer agentsNotes
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Supplementary material
References
- 1.Chinthala Y, Thakur S, Tirunagari S, Chinde S, Domatti AK, Arigari NK, Srinivas KVNS, Alam S, Jonnala KK, Khan F, Ashok T, Grover P (2015). Eur J Med Chem 93:564–573PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Zugazagoitia J, Gudedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016). Clin Ther 38:1551–1566PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Le QV, Wu Y, Yang G, Jang HW, Shokouhimehr M, Oh YK (2019). Asian J Pharm Sci 14:16–29CrossRefGoogle Scholar
- 4.Nasir RB, Varma RS (2012). Chem Commun 48:5853–5855CrossRefGoogle Scholar
- 5.Huang SD, Li Y, Shokouhimehr M (2010) Gadolinium containing prussian blue nanoparticles as nontoxic MRI contrast agents having high relaxivity. U.S. Pat. 20100254Google Scholar
- 6.Kumar D, Reddy VB, Varma RS (2009). Tetrahedron Lett 50:2065–2068CrossRefGoogle Scholar
- 7.Ruddarraju RR, Murugulla AC, Kotla R, Tirumalasetty MCB, Wudayagiri R, Donthabakthuni S, Maroju R (2017). Med Chem Commun 8:176–183CrossRefGoogle Scholar
- 8.Holla BS, Veerendra B, Shivananda MK, Poojary B (2003). Eur J Med Chem 38:759–767CrossRefGoogle Scholar
- 9.Turan-Zitouni G, Kaplancikli ZA, Yildiz MT, Chevallet P, Kaya D (2005). Eur J Med Chem 40:607–6013PubMedCrossRefGoogle Scholar
- 10.Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Sokovic M, Glamocilija J, Ciric A (2008). Bioorg Med Chem 16:1150–1161PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Ozdemir A, Turan-Zitouni G, Kaplancikli ZA, Chevallet PJ (2007). Enzyme Inhib Med Chem 22:511–516CrossRefGoogle Scholar
- 12.Chahal MK, Dar TA, Sankar M (2018). New J Chem 42:10059–10066CrossRefGoogle Scholar
- 13.Tozkoparan B, Gokhan N, Aktay G, Yesilada E, Ertan M (2000). Eur J Med Chem 35:743–750PubMedCrossRefPubMedCentralGoogle Scholar
- 14.Ned DH, Jack RRJ (1980). Heterocycl Chem 17:1087–1088CrossRefGoogle Scholar
- 15.Chen J, Sun XY, Chai KY, Song MS, Quan ZS (2007). Bioorg Med Chem 15:6775–6781PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Polya JB (1955). Nature 176:1175–1176CrossRefGoogle Scholar
- 17.Zahran F, Abdel-Latif F, Sayed A, Shaban R, Keshta A (2013). Int J Biol Pharm Res 4:261–270CrossRefGoogle Scholar
- 18.Li D, Zhang N, Dai L, Yang Z, Tao Z (2016). Appl Organomet Chem 30:346–353CrossRefGoogle Scholar
- 19.Xu F, Yang Z, Ke Z, Xi L, Yan Q, Yang W, Zhu L, Lin F, Lv W, Wu H, Wang J, Li H (2016). Bioorg Med Chem Lett 26:4580–4586PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Jarosław S, Aleksandra G, Beata Z, Anna K (2015). Molecules 21:41–57CrossRefGoogle Scholar
- 21.Radwan A, Aboul-fadl T, Al-dhfyan A, Abdel-mageeda W (2014). Asian J Chem 26:8145–8150CrossRefGoogle Scholar
- 22.Aytac P, Durmaz I, Houston D, Cetin-Atalay R, Tozkoparan B (2016). Bioorg Med Chem 24:858–872PubMedCrossRefGoogle Scholar
- 23.Kleemann A, Engel J (1999) Pharmaceutical substances. Thieme, StuttgartGoogle Scholar
- 24.Khaleghi F, Jantan I, Din LB, Yaacob WA, Khalilzadeh MA, Bukhari SNA (2014). J Nat Med 68:351–357PubMedCrossRefGoogle Scholar
- 25.Rajabi M, Hossaini Z, Khalilzadeh MA, Datta S, Halder M, Mousa SA (2015). J Photochem Photobiol B 148:66–72PubMedCrossRefGoogle Scholar
- 26.Rajabi M, Khalilzadeh MA, Mehrzad J (2012). DNA Cell Biol 31:128–134PubMedCrossRefGoogle Scholar
- 27.Rajabi M, Khalilzadeh MA, Tavakolinia F, Signorelli P, Ghidoni R, Santaniello E (2012). DNA Cell Biol 31:783–789PubMedCrossRefGoogle Scholar
- 28.Tavakolinia F, Baghipour T, Khalilzadeh MA, Hossaini Z, Rajabi M (2012). Nucleic Acids Ther 22:265–270CrossRefGoogle Scholar
- 29.Meerloo J, Kaspers GJ, Cloos J (2011). Methods Mol Biol 731:237–245PubMedCrossRefGoogle Scholar
- 30.Browne LJ, Gude C, Rodriguez H, Steele RE, Bhatnager AJ (1991). J Med Chem 34:725–736PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Carter GP, Harjani JR, Li L, Pitcher NP, Nong Y, Riley TV, Williamson DA, Stinear TP, Baell JB, Howden BP (2018). Antimicrob Chemother 73:1562–1569CrossRefGoogle Scholar
- 32.Polucci P, Magnaghi P, Angiolini M, Asa D, Avanzi N, Badari A, Bertrand J, Casale E, Cauteruccio S, Cirla A, Cozzi L, Galvani A, Jackson PK, Liu Y, Magnuson S, Malgesini B, Nuvoloni S, Orrenius C, Riccardi Sirtori F, Riceputi L, Rizzi S, Trucchi B, O’Brien T, Isacchi A, Donati D, D’Alessio R (2013). J Med Chem 56:437PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Kolodina AA, Lesin AV (2009). Russ J Org 45:139CrossRefGoogle Scholar
- 34.Kaplancikli ZA, Turan-Zitouni G, Chevallet P (2005). J Enzyme Inhib Med Chem 20:179PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Zhao PL, Chen P, Li Q, Hu MJ, Diao PC, Pan ES, You WW (2016). Bioorg Med Chem Lett 26:3679PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Zhang Q, Peng Y, Wang XI, Keenan SM, Arora S, Welsh WJ (2007). J Med Chem 50:749–754PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS (2009). J Comput Chem 30:2785–2797PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Kaur J, Kaur B, Singh P (2018). Bioorg Med Chem Lett 28:129–141PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Botta M, Armaroli S, Castagnolo D, Fontana G, Pera P, Bombardell E (2007) J Bioorg Med Chem. Lett 17:1579–1583Google Scholar
- 40.Li YH, Zhang B, Yang HK, Li Q, Diao PC, You WW, Zhao PL (2017). Eur J Med Chem 125:1098–1106PubMedCrossRefGoogle Scholar
- 41.Romagnoli R, Baraldi PG, Salvador MK, Prencipe F, Bertolasi V, Cancellieri M, Brancale A, Hamel E, Castagliuolo I, Consolaro F, Porcù E, Basso G, Viola G (2014). J Med Chem 57:6795–6808PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, Reinelt S, Lane H, Steinmetz MO (2014). J Mol Biol 426:1848–1860PubMedCrossRefGoogle Scholar
- 43.Kamal A, Srikanth PS, Vishnuvardhan MVPS, Bharath Kumar G, Suresh Babu K, Hussaini SMA, Kapure JS, Alarifi A (2016). Bioorg Chem 65:126–136PubMedCrossRefGoogle Scholar
- 44.Guggilapu SD, Guntuku L, Srinivasa Reddy T, Nagarsenkar A, Sigalapalli DK, Naidu VGM, Bhargava SK, Babu Bathini N (2017). Eur J Med Chem 138:83–95PubMedCrossRefGoogle Scholar