Advertisement

Investigation of structural stability, electronic properties of S-doped CdSe using ab initio calculations

  • Faezeh Farsinia
  • Maryam DehestaniEmail author
  • Mehdi Molaei
Original Research
  • 1 Downloads

Abstract

In current theoretical study, our main focus is to determine which electronic properties of the CdSe may change by S doping using electronic structure calculations. Our results show that the chemical reactivity of CdxSex-nSn (n = 1–11) is lower than that of CdSe. Natural bond orbital (NBO) analysis that we have performed to understand intermolecular interaction of CdxSex-nSn (n = 1–11) reveals that strong bonds could be established between S atoms and Cd in CdxSex-nSn. Analysis of topological parameters has been used to estimate the S-bond strength. The chemical potential of CdxSex-nSn shows that these compounds have lower chemical potential in comparison to CdSe. The localized orbital locator (LOL), electron location function, and analysis of quantum theory of atoms in the molecule (QTAIM) have been used to investigate the nature of the various possible interactions between Cd, Se, and S atoms.

Keywords

Natural bond orbital analysis Chemical reactivity HOMO–LUMO Quantum theory of atoms in molecules CdSe S doping 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11224_2019_1449_MOESM1_ESM.docx (6.2 mb)
ESM 1 (DOCX 6376 kb)

References

  1. 1.
    Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nat 404:59–61CrossRefGoogle Scholar
  2. 2.
    Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P (2003) Characterization of surface electrostatic potentials of some (5, 5) and (n, 1) carbon and boron/nitrogen model nanotubes. Nano Lett 3:21–28CrossRefGoogle Scholar
  3. 3.
    Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397PubMedCrossRefGoogle Scholar
  4. 4.
    Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Chem Soc 122:12700–12706CrossRefGoogle Scholar
  5. 5.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427PubMedCrossRefGoogle Scholar
  6. 6.
    Ispasoiu R, Lee J, Papadimitrakopoulos F, Goodson Iii T (2001) Surface effects in the fluorescence ultra-fast dynamics from CdSe nano-crystals. Chem Phys Lett 340:7–12CrossRefGoogle Scholar
  7. 7.
    Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale C, Eisler HJ, Bawendi M (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science. 290:314–317PubMedCrossRefGoogle Scholar
  8. 8.
    Puzder A, Williamson A, Gygi F, Galli G (2004) Self-healing of CdSe nanocrystals: first-principles calculations. Phys Rev Lett 92:217401–217405PubMedCrossRefGoogle Scholar
  9. 9.
    Scholes GD (2008) Controlling the optical properties of inorganic nanoparticles. Adv Funct Mater 18:1157–1172CrossRefGoogle Scholar
  10. 10.
    Mocatta D, Cohen G, Schattner J, Millo O (2011) Rabani E and Banin U (2011) Heavily doped semiconductor nanocrystal quantum dots. Science. 332:77–81PubMedCrossRefGoogle Scholar
  11. 11.
    Sahu A, Kang MS, Kompch A, Notthoff C, Wills AW, Deng D, Winterer M, Frisbie CD, Norris DJ (2012) Electronic impurity doping in CdSe nanocrystals. Nano Lett 12:2587–2594PubMedCrossRefGoogle Scholar
  12. 12.
    Ott FD, Spiegel LL, Norris DJ, Erwin SC (2014) Microscopic theory of cation exchange in CdSe nanocrystals. Phys Rev Lett 113:156803–156805PubMedCrossRefGoogle Scholar
  13. 13.
    Lopez-Luke T, Wolcott A, Xu LP, Chen S, Wen Z, Li J, La D, Rosa E, Zhang JZ (2008) Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystal line TiO2 films for solar energy conversion applications. J Phys Chem C 112:1282–1292CrossRefGoogle Scholar
  14. 14.
    Hensel J, Wang G, Li Y, Zhang JZ (2010) Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10:478–483PubMedCrossRefGoogle Scholar
  15. 15.
    Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239CrossRefGoogle Scholar
  16. 16.
    Ls L, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351CrossRefGoogle Scholar
  17. 17.
    Soloviev V, Eichhöfer A, Fenske D, Banin U (2000) Molecular limit of a bulk semiconductor: size dependence of the “band gap” in CdSe cluster molecules. J Chem Soc 122:2673–2674CrossRefGoogle Scholar
  18. 18.
    Smith AM, Nie S (2010) Semiconductor nanocrystals, structure, properties, and band gap engineering. Acc Chem Res 43:190–200PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Shao P, Zhang Q, Li Y, Wang H (2011) Aqueous synthesis of color-tunable and stable Mn2+-doped ZnSe quantum dots. J Mat Chem 21:151–156CrossRefGoogle Scholar
  20. 20.
    Lakshmi PVB, Raj KS, Ramachandran K (2009) Synthesis and characterization of nano ZnS doped with Mn. Cryst Res Technol 44:153–158CrossRefGoogle Scholar
  21. 21.
    Wang Y, Herron N (1992) Photoconductivity of CdS nanocluster-doped polymers. Chem Phys Lett 200:71–75CrossRefGoogle Scholar
  22. 22.
    Kwak W-C, Sung Y-M (2007) Synthesis of Mn-doped zinc blende CdSe nanocrystals. Appl Phys Lett 90:1731111–1731112CrossRefGoogle Scholar
  23. 23.
    Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Doping semiconductor nanocrystals. Nature. 436:91–94PubMedCrossRefGoogle Scholar
  24. 24.
    Rempel JY, Trout BL, Bawendi MG, Jensen KF (2006) Density functional theory study of ligand binding on CdSe (0001),(0001), and (1120) single crystal relaxed and reconstructed surfaces: implications for nanocrystal line growth. J Phys Chem B 110:18007–18016PubMedCrossRefGoogle Scholar
  25. 25.
    Lee W, Kwak W-C, Min SK, Lee J-C, Chae W-S, Sung Y-M, Han S-H (2008) Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochem Commun 10:1699–1702CrossRefGoogle Scholar
  26. 26.
    Perna G, Capozzi V, Ambrico M, Augelli V, Ligonzo T, Minafra A, Schiavulli L, Pallara M (2004) Structural and optical characterization of Zn doped CdSe films. App Sur Sci 233:366–372CrossRefGoogle Scholar
  27. 27.
    Dehestani M, Pourestarabadi S (2016) A density functional theory and quantum theory of atoms in molecules study on hydrogen bonding interaction between paracetamol and water molecules. Russ J Phys Chem B 10:890–896CrossRefGoogle Scholar
  28. 28.
    Dehestani M, Pourestarabadi S, Zeidabadinejad L (2016) Quantum chemical investigation on the structural and electronic properties of α-, β-, and γ-cyclodextrin complexes: DFT and QTAIM analysis. Russ J Phys Chem A 90:1192–1199CrossRefGoogle Scholar
  29. 29.
    Dehestani M, Zeidabadinejad L, Pourestarabadi S (2017) QTAIM investigations of decorated graphyne and boron nitride for Li detection. J Serb Chem Soc 82:289–301Google Scholar
  30. 30.
    Faghih-Mirzaee E, Dehestani M, Zeidabadinejad L (2017) Computational study on transfer of L-ascorbic acid by UlaA through Escherichia coli membrane. J Bioinform Comput Biol 15:17500071–175000715CrossRefGoogle Scholar
  31. 31.
    Mousavi Fard B, Zeidabadi Nejad L, Pourastarabadi S, Dehestani M (2015) Investigation of interaction of vanillin with Alpha, Beta and Gamma-cyclodextrin as drug delivery carriers: brief report, Tehran. Univ Med J 73:132–137Google Scholar
  32. 32.
    Zeidabadinejad L, Dehestani M (2015) A theoretical study of the structural, vibrational, and topological properties of charge distribution of the molecular complexes between furan and zeolites. Sci Iran 22:2262–2270Google Scholar
  33. 33.
    Zeidabadinejad L, Dehestani M, Pourestarabadi S (2017) On the chemical bonding features in palladium containing compounds: A combined QTAIM/DFT topological analysis. J Struc Chem 58:471–478CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bader RF (1990) Atoms in molecules. Wiley Online Library, HobokenGoogle Scholar
  36. 36.
    Fradera X, Austen MA, Bader RF (1999) The Lewis model and beyond. J Phys Chem A 103:304–314CrossRefGoogle Scholar
  37. 37.
    Cioslowski J, Nanayakkara A (1994) A new robust algorithm for fully automated determination of attractor interaction lines in molecules. Chem Phys Lett 219:151–154CrossRefGoogle Scholar
  38. 38.
    Ravindran P, Asokamani R (1997) Correlation between electronic structure, mechanical properties and phase stability in intermetallic compounds. Bull Mater Sci 20:613–622CrossRefGoogle Scholar
  39. 39.
    Koopmans TA (1934) Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1:104–113CrossRefGoogle Scholar
  40. 40.
    Geerlings P, Proft F, De LW (2003) Conceptual density functional theory. Chem Rev 103:1793–1874PubMedCrossRefGoogle Scholar
  41. 41.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Chem Soc 105:7512–7516CrossRefGoogle Scholar
  42. 42.
    Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Chem Soc 121:1922–1924CrossRefGoogle Scholar
  43. 43.
    Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond. Angew Chem Int Ed 23:627–628CrossRefGoogle Scholar
  44. 44.
    Cremer D, Kraka E (1985) A description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57:1259–1281Google Scholar
  45. 45.
    Wang Y, Wei D, Wang Y, Zhang W, Tang M (2015) N-heterocyclic carbene (NHC)-catalyzed sp3 β-C–H activation of saturated carbonyl compounds: mechanism, role of NHC, and origin of stereoselectivity. ACS Catalysis 6:279–289CrossRefGoogle Scholar
  46. 46.
    Li S-J, Fang D-C (2016) A DFT kinetic study on 1, 3-dipolar cycloaddition reactions in solution. Phys Chem Chem Phys 18:30815–30823PubMedCrossRefGoogle Scholar
  47. 47.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Faezeh Farsinia
    • 1
  • Maryam Dehestani
    • 1
    Email author
  • Mehdi Molaei
    • 2
  1. 1.Department of ChemistryShahid Bahonar University of KermanKermanIran
  2. 2.Department of PhysicsVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations