Jahn-Teller and Pseudo Jahn-Teller Effects: Influences on the Electronic Structures of Small Transition, Main Group and Mixed Metal Clusters

  • D. MajumdarEmail author
  • Pabitra Narayan Samanta
  • Szczepan Roszak
  • Minh Tho Nguyen
  • Jerzy LeszczynskiEmail author
Review Article


The present review article focuses on the impact of the Jahn-Teller effect (JTE) including hidden JTE and pseudo JTE on the ground and low-lying electronic structures of small transition, main group, and mixed metal clusters. The discussions are based on the results acquired from the quantum chemical analysis involving complete active space multiconfiguration self-consistent field (CASMCSCF or CASSCF) together with multireference singles and doubles configuration interaction (MRSDCI) theories. Related computational results from density functional (DFT) and coupled cluster (CC) theories, and the available experimental evidences on the JT-distorted structures are also included for comparative analysis. The role of the relativistic effects on several heavy metal clusters is discussed in detail, since these effects could lead to either enhancement or the quenching of the JTE. The final section of the review manifests the JT-distortion of several mixed metal clusters of icosahedral symmetry and they are explained through a much simpler shell structure (jellium) model.


Jahn-Teller Effects Pseudo Jahn-Teller Effects Transition Metal Clusters Main Metal Clusters Mixed Metal Clusters 



MTN thanks the ICST Vietnam for support.

Funding information

This work has been supported by NSF-CREST (Award No. 154774). S.R. acknowledges the financial support by a statutory activity subsidy from Polish National Centre of Science (Grant No. 2014/15/B/ST5/04730).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, Cambridge UKCrossRefGoogle Scholar
  2. 2.
    Bersuker IB (2001). Chem Rev 101:1067–1114PubMedCrossRefGoogle Scholar
  3. 3.
    O’Brien MCM, Chancey CC (1993). Am J Phys 61:688–697CrossRefGoogle Scholar
  4. 4.
    Domcke W, Opalka D, Poluyanov LV (2016). J Chem Phys 144:124101-1-12CrossRefGoogle Scholar
  5. 5.
    Kӧppel H, Yarkony DR, Barentzen H (eds) (2009) The Jahn-Teller effect, fundamentals and implications for physics and chemistry. Springer, New YorkGoogle Scholar
  6. 6.
    Jahn HA, Teller E (1937). Proc R Soc London A 161:220–235CrossRefGoogle Scholar
  7. 7.
    Bersuker IB, Polinger VZ (1989) Vibronic interactions in molecules and crystals. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Jahn HA (1935). Proc R Soc London A 164:117–131Google Scholar
  9. 9.
    Senn P (1992). J Chem Educ 69:819–821CrossRefGoogle Scholar
  10. 10.
    Breza M (1991). Chem Pap 45:473–479Google Scholar
  11. 11.
    Bersuker IB (2009) In: Kӧppel H, Yarkony DR, Barentzen H (eds) The Jahn-Teller effect, fundamentals and implications for physics and chemistry, 3-23. New York, SpringerGoogle Scholar
  12. 12.
    Zwanziger JW, Whetten RL, Grant ER (1986). J Phys Chem 90:3298–3301CrossRefGoogle Scholar
  13. 13.
    Persaud RR, Chen M, Peterson KA, Dixon DA (2019). J Phys Chem A 123:1198–1207PubMedCrossRefGoogle Scholar
  14. 14.
    Howard JA, Peterson KF, Sutchiffe R, Mile B (1983). J Phys Chem 87:536–537CrossRefGoogle Scholar
  15. 15.
    Morse MD, Hopkins JB, Langridge-Smith PRR, Smalley RE (1983). J Chem Phys 79:5316–5328CrossRefGoogle Scholar
  16. 16.
    Morse MD (1987). Chem Phys Lett 133:8–13CrossRefGoogle Scholar
  17. 17.
    Wang H, Craig R, Haouari H, Liu Y, Lombardi JR, Lindsay DM (1996). J Chem Phys 105:5365–5357Google Scholar
  18. 18.
    Kietzmann H et al (1996). Phys Rev Lett 77:4528–4531PubMedCrossRefGoogle Scholar
  19. 19.
    Loh SK, Lian L, Armentrout PB (1989). J Chem Phys 91:6148–6163CrossRefGoogle Scholar
  20. 20.
    Hales DA, Lian L (1990) Armentrout PB. Int J Mass Spectrum Ion Process 102:269–301CrossRefGoogle Scholar
  21. 21.
    Sellers H (1990). J Phys Chem 94:1338–1343CrossRefGoogle Scholar
  22. 22.
    Fowler JE, Garcia A, Ugalde JM (1999). Phys Rev A 60:3058–3070CrossRefGoogle Scholar
  23. 23.
    Goodwin L, Salahub DR (1993). Phys Rev A 47:R774–R777PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Grönbeck H, Rosén A, Andreoni W (1998). Phys Rev A 58:4630–4636CrossRefGoogle Scholar
  25. 25.
    Fournier R, Pang T, Chen C (1998). Phys Rev A 57:3683–3691CrossRefGoogle Scholar
  26. 26.
    Nhat PV, Ngan VT, Nguyen MT (2010). J Phys Chem C 114:13210–13218CrossRefGoogle Scholar
  27. 27.
    Majumdar D, Balasubramanian K (2003). J Chem Phys 119:12866–12877CrossRefGoogle Scholar
  28. 28.
    Langhoff SR, Davidson R (1974). Int J Quantum Chem 8:61–72CrossRefGoogle Scholar
  29. 29.
    Majumdar D, Balasubramanian K (2001). J Chem Phys 115:885–898CrossRefGoogle Scholar
  30. 30.
    Dai D, Balasubramanian K (1994). Chem Phys Lett 231:352–358CrossRefGoogle Scholar
  31. 31.
    Vanzee RJ, Li S, Weltner W (1992). Chem Phys Lett 195:214–220CrossRefGoogle Scholar
  32. 32.
    Das KK, Balasubramanian K (1990). J Chem Phys 93:625–632CrossRefGoogle Scholar
  33. 33.
    Dai D, Balasubramanian K (1992). Chem Phys Lett 195:207–213CrossRefGoogle Scholar
  34. 34.
    Balasubramanian K (1997) Relativistic effects in chemistry, Part A. John Wiley & Sons, Inc, New YorkGoogle Scholar
  35. 35.
    Balasubramanian K (1997) Relativistic effects in chemistry, Part B. John Wiley & Sons, Inc, New YorkGoogle Scholar
  36. 36.
    Balasubramanian K, Majumdar D (2001). J Chem Phys 115:8795–8809CrossRefGoogle Scholar
  37. 37.
    Gantefor G, Gausa M, Meiaes-Broer KH, Ho L (1989). Z Phys D: At Mol Clusters 12:405–409CrossRefGoogle Scholar
  38. 38.
    Stranz DD, Khanna RK (1981). J Chem Phys 74:2116–2119CrossRefGoogle Scholar
  39. 39.
    Gingerich KA, Cocke DL, Miller F (1976). J Chem Phys 64:4027–4033CrossRefGoogle Scholar
  40. 40.
    Saito Y, Yamauchi K, Mihama K, Noda T (1982). Jpn J Appl Phys Part 2 21:L396–L398CrossRefGoogle Scholar
  41. 41.
    Balasubramanian K, Liao MZ (1988). Chem Phys 127:313–324CrossRefGoogle Scholar
  42. 42.
    Huang MJ, Watts JD (2012). Phys Chem Chem Phys 14:6849–6855PubMedCrossRefGoogle Scholar
  43. 43.
    Balasubramanian K, Das KK (1991). Chem Phys Lett 186:577–582CrossRefGoogle Scholar
  44. 44.
    Boo DW, Ozaki Y, Anderson LH, Lineberger WC (1997). J Chem Phys 101:6688–6696CrossRefGoogle Scholar
  45. 45.
    Guo R, Balasubramanian K, Wang X, Andrews L (2002). J Chem Phys 117:1614–1620CrossRefGoogle Scholar
  46. 46.
    Gorinchoi NN, Chimposesu F, Bersuker IB (2002). J Mol Struct (THEOCHEM) 530:281–290CrossRefGoogle Scholar
  47. 47.
    Dai D, Roszak S, Balasubramanian K (1999). Chem Phys Lett 308:495–502CrossRefGoogle Scholar
  48. 48.
    Wang H, Hu Z, Haouari H, Craig R, Liu Y, Lombardi JR, Lindsay DM (1997). J Chem Phys 106:8339–8343CrossRefGoogle Scholar
  49. 49.
    Majumdar D, Dai D, Balasubramanian K (2000). J Chem Phys 113:7919–7927CrossRefGoogle Scholar
  50. 50.
    Ervin KM, Ho J, Lineberger WC (1988). J Chem Phys 89:4514–4521CrossRefGoogle Scholar
  51. 51.
    Balasubramanian K (1989). J Chem Phys 91:307–313CrossRefGoogle Scholar
  52. 52.
    Majumdar D, Balasubramanian K (2004). J Chem Phys 121:4014–4032PubMedCrossRefGoogle Scholar
  53. 53.
    Knickebein MB, Yang S (1990). J Chem Phys 93:5760–5767CrossRefGoogle Scholar
  54. 54.
    Nhat PV, Ngan VT, Tai TB, Nguyen MT (2011). J Phys Chem A 115:3523–3535PubMedCrossRefGoogle Scholar
  55. 55.
    Nhat PV, Nguyen MT (2012). J Phys Chem A 116:7405–7418PubMedCrossRefGoogle Scholar
  56. 56.
    Nhat PV, Majumdar D, Leszczynski J, Nguyen MT, Kiran B (eds) (2017) Clusters: structure, bonding and reactivity. Springer, Switzerland, pp 87–135Google Scholar
  57. 57.
    Dai D, Balasubramanian K (1992). Chem Phys Lett 193:565–572CrossRefGoogle Scholar
  58. 58.
    Majumdar D, Balasubramanian K (1997). Chem Phys Lett 279:403–410CrossRefGoogle Scholar
  59. 59.
    Dai D, Balasubramanian K (1996). Chem Phys Lett 263:703–709CrossRefGoogle Scholar
  60. 60.
    Majumdar D, Balasubramanian K (1997). J Chem Phys 106:4053–4060CrossRefGoogle Scholar
  61. 61.
    Majumdar D, Balasubramanian K (1998). J Chem Phys 108:2495–2503CrossRefGoogle Scholar
  62. 62.
    Zakin MR, Cox DM, Kaldor A (1988). J Chem Phys 89:1201–1202CrossRefGoogle Scholar
  63. 63.
    Dai D, Balasubramanian K (1995). J Chem Phys 103:648–655CrossRefGoogle Scholar
  64. 64.
    Majumdar D, Dai D, Balasubramanian K (2000). J Chem Phys 113:7928–7938CrossRefGoogle Scholar
  65. 65.
    Dai D, Balasubramanian K (1999). Chem Phys Lett 310:303–312CrossRefGoogle Scholar
  66. 66.
    Häkkinen H, Landman U (2000). Phys Rev B 62:R2287–R2290CrossRefGoogle Scholar
  67. 67.
    Häkkinen H, Yoon B, Landman U, Li X, Zhai H-J, Wang L-S (2003). J Phys Chem A 107:6168–6175CrossRefGoogle Scholar
  68. 68.
    Bonačić-Koutecký V, Češpiva L, Fantucci P, Koutecký J (1993). J Chem Phys 98:7981–7994CrossRefGoogle Scholar
  69. 69.
    Fournier R (2001). J Chem Phys 115:2165–2177CrossRefGoogle Scholar
  70. 70.
    Majumdar D, Roszak S, Leszczynski J (2012). Can J Chem Eng 90:852–859CrossRefGoogle Scholar
  71. 71.
    Zhao C, Balasubramanian K (2002). J Chem Phys 116:10287–10296CrossRefGoogle Scholar
  72. 72.
    Gong XG, Kumar V (1993). Phys Rev Lett 70:2078–2081PubMedCrossRefGoogle Scholar
  73. 73.
    Pham HT, Majumdar D, Leszczynski J, Nguyen MT (2017). Phys Chem Chem Phys 19:3115–3124PubMedCrossRefGoogle Scholar
  74. 74.
    Höltzl T, Lievens P, Veszprémi T, Nguyen MT (2009). J Phys Chem C 113:21016–21018CrossRefGoogle Scholar
  75. 75.
    Muñoz-Castro A (2013). J Phys Chem Lett 4:3363–3366CrossRefGoogle Scholar
  76. 76.
    Sato T, Lijen E, Ceulemans A (2014). J Chem Theory Comput 10:613–622PubMedCrossRefGoogle Scholar
  77. 77.
    Sato T, Ceulemans A (2007). J Chem Phys 126:184501-1-9Google Scholar
  78. 78.
    Lin L, Höltzl T, Gruene P, Claes P, Meijer G, Fielicke A, Lievens P, Nguyen MT (2008). Chem Phys Chem 9:2471–2474PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Pyykkö P, Runeberg N (2002). Angew Chem Int Ed 41:2174–2176CrossRefGoogle Scholar
  80. 80.
    Li X, Kiran B, Zhai HJ, Wang LS (2002). Angew Chem Int Ed 41:4786–4789CrossRefGoogle Scholar
  81. 81.
    Zhai HJ, Li J, Wang LS (2004). J Chem Phys 121:8369–8374PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric SciencesJackson State UniversityJacksonUSA
  2. 2.Advanced Materials Engineering and Modelling Group, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
  3. 3.Department of ChemistryKU LeuvenLeuvenBelgium

Personalised recommendations