•OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses
- 22 Downloads
Abstract
The first steps of the oxidation process of amino acid methionine (Met, CAS 63-68-3) by •OH radicals, leading to Met-OH• adduct and then to Met radical cation, were investigated theoretically over the last few years considering the aqueous environment as a continuum. In this work, following the same procedure that we used for the oxidation of dimethyl sulfide as reported by Domin et al. (J Phys Chem B, 121:9321), discrete water molecules, as well as relative positions, of the •OH radical to Met were taken from molecular dynamics calculations. The presence of water molecules strongly modifies the relative energies of Met-OH adducts and cations when water is properly modeled. Depending on the terminal functional groups and on the position of the •OH radical, several stable structures were found; however, the most stable radical is the N-centered or the S∴N radical cation. QTAIM analysis and valence bond (VB) treatment allowed for the characterization of the 2c∴3e nature of S∴N and S∴OH bonds. VB analysis estimated the probability of the heterolytic rupture of the •OH adduct that is modified by the presence of water molecules.
Oxidation of amino acid methionine by •OH radicals in the presence of discrete water molecules.
Keywords
Oxidation of methionine by OH radicals Explicit water molecules DFT calculation QTAIM VB analysis Two center-three electron bonded radicalNotes
Compliance with ethical standards
Conflict of interest
The authors declare that they have no competing interests.
Supplementary material
References
- 1.Asmus KD, Janata E (1982). In: Baxendale JH, Busi F, Reidel D (ed) The study of fast processes and transient species by Electron Pulse Radiolysis Publishing Company Dordrecht, pp 115-128Google Scholar
- 2.Asmus KD (2001) In: Jonah CD, BMSR R (eds) Radiation chemsitry: present status and future trends. Elsevier, New York, pp 341–393CrossRefGoogle Scholar
- 3.Bobrowski K, Hug GL, Pogocki D, Marciniak B, Schoneich C (2007). J Phys Chem B111:9608CrossRefGoogle Scholar
- 4.Bobrowski K, Houée Levin C, Marciniak B (2008). Chimia 62:728CrossRefGoogle Scholar
- 5.Ignasiak M, Marciniak B, Houée Levin C (2014). Isr J Chem 54:225CrossRefGoogle Scholar
- 6.Ignasiak M, Scuderi D, de Oliveira P, Pedzinski T, Rayah Y, Houée Levin C (2011). Chem Phys Lett 502:29CrossRefGoogle Scholar
- 7.Ignasiak M, de Oliveira P, Houée Levin C, Scuderi D (2013). Chem Phys Lett 590:35CrossRefGoogle Scholar
- 8.Ignasiak M, Pedzinski T, Rusconi F, Filipiak P, Bobrowski K, Houée-Levin C, Marciniak B (2014). J Phys Chem B 118:8549CrossRefGoogle Scholar
- 9.Buxton G, Greenstock CL, Helman WP, Ross AB (1988). J Phys Chem 17:513Google Scholar
- 10.Archirel P, Bergès J, Houée-Levin C (2016). J Phys Chem B 120:9875CrossRefGoogle Scholar
- 11.Bergès J, de Oliveira P, Fourré I, Houée-Levin C (2012). J Phys Chem B 116:9352CrossRefGoogle Scholar
- 12.Bergès J, Kamar A, de Oliveira P, Pilmé J, Luppi E, Houée-Levin C (2015). J Phys Chem B 119:6885CrossRefGoogle Scholar
- 13.Fourré I, Bergès J, Houée-Levin C (2010). J Phys Chem A 114:7359CrossRefGoogle Scholar
- 14.Fourré I, Bergès J, Braïda B, Houée Levin C (2008). Chem Phys Lett 467:164CrossRefGoogle Scholar
- 15.Scuderi D, Bergès J, de Oliveira P, Houée-Levin C (2016). Radiat Phys Chem 128:103CrossRefGoogle Scholar
- 16.Scuderi D, Ignasiak M, Serfaty X, de Oliveira P, Houée Levin C (2015). PhysChem Chem Phys 17:25998Google Scholar
- 17.Perdivara I, Deterding LJ, Przybylski M, Tomer KB (2010). J Amer Soc Mass Spect 21:1114CrossRefGoogle Scholar
- 18.Pilmé J, Luppi E, Bergès J, Houée-Levin C, de la Lande A (2014). J Mol Model 20:2368CrossRefGoogle Scholar
- 19.Xipsiti C, Nicolaides AV (2013). Comput Theor Chem 1009:24CrossRefGoogle Scholar
- 20.Uranga J, Mujika JI, Matxain JM (2015). J Phys Chem B 119:15430CrossRefGoogle Scholar
- 21.Chu JW, Brooks BR, Trout BLJ (2004). J Am Chem Soc 126:16601CrossRefGoogle Scholar
- 22.Marino T, Soriano-Correa C, Russo N (2012). J Phys Chem B 116:5349CrossRefGoogle Scholar
- 23.Domin D, Braïda B, Bergès J (2017). J Phys Chem B 121:9321CrossRefGoogle Scholar
- 24.Shaik S, Braïda B, Wu W, Hiberty PC (2016). In: Mingos, DMP (ed) Chemical bond II: 100 years old and getting stronger, Springer: Switzerland 170, pp 169Google Scholar
- 25.Danovich D, Foroutan-Nejad C, Hiberty PC, Shaik S (2018). J Phys Chem A 122:1873CrossRefGoogle Scholar
- 26.Jorgensen WL, Chandrasekhar J, Madura JD (1983). J Chem Phys 79:926CrossRefGoogle Scholar
- 27.MacKerell Jr AD, Bashford D, Bellott M et al (1998). J Phys Chem B 102:3586CrossRefGoogle Scholar
- 28.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, IzmaylovAF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M,Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, HondaY, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE,Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K,Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N,Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C,Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ,Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox (2009) Gaussian 09. vol D.01. Wallingford CTGoogle Scholar
- 29.Bader RFW (1991). Chem Rev 91:893CrossRefGoogle Scholar
- 30.Bader RFW, Stephens ME (1975). J Amer Chem Soc 97:7391CrossRefGoogle Scholar
- 31.Fradera X, Austen MA, Bader RFW (1998). J Phys Chem A 103:304CrossRefGoogle Scholar
- 32.Braïda B, Hiberty PC, Savin A (1998). J Phys Chem A 102:7872CrossRefGoogle Scholar
- 33.Braïda B, Hiberty PC (2000). J Phys Chem A 104:4618CrossRefGoogle Scholar
- 34.Braïda B, Lauvergnat D, Hiberty PC (2001). J Chem Phys 115:90CrossRefGoogle Scholar