Advertisement

Temperature dependence of rate constants for the H(D) + CH4 reaction in gas and aqueous phase: deformed Transition-State Theory study including quantum tunneling and diffusion effects

  • Flávio O. Sanches-NetoEmail author
  • Nayara D. Coutinho
  • Federico Palazzetti
  • Valter H. Carvalho-SilvaEmail author
Original Research
  • 2 Downloads

Abstract

In recent years, the understanding and control of mechanisms involving radical attacks to hydrocarbons have been object of investigation in several fields, especially in combustion reactions and energy resource technology. The H(D) + CH4 ⟶ CH3 + H2(HD) reactions are known as prototypical reactions of hydrocarbons and have been extensively investigated both experimentally and theoretically in the gas-phase. Here, the reaction rate constants for the hydrogen abstraction of methane by atomic hydrogen (and deuterium) in the gas phase have been validated by employing the deformed Transition-State Theory (\( d \)-TST): The results motivated the use of Collins-Kimball approaches to provide kinetics data in the aqueous phase. The \( d \)-TST has been found to be accurate for absolute values and temperature dependence of the reaction rate constant in the gas phase, especially for what concerns the excellent agreement with experimental data for the variant isotopic when compared with previous formulations. For the first time, theoretical rate constants in aqueous solution for the title reaction are presented reproducing the experimental data at 288.15 K.

Keywords

\( \mathbf{\mathcal{d}} \)-TST Diffusion limit Tunneling correction Hydrocarbons DFT 

Notes

Acknowledgments

We thank Danilo Calderini and Vincenzo Aquilanti for fruitful discussions.

Funding information

Support was given by the Brazilian agency CAPES. This research is also supported by the High-Performance Computing Center at the Universidade Estadual de Goiás, Brazil. Valter H. Carvalho-Silva thanks Brazilian agency CNPq for the research funding programs (Universal 01/2016-Faixa A-406063/2016-8) and Organizzazione Internazionale Italo-Latino Americana (IILA) for a Biotechnology Sector-2019 scholarship. Federico Palazzetti and Nayara D. Coutinho was financially supported by the Italian Ministry for Education, University and Research, MIUR: SIR 2014 “Scientific Independence for young Researchers” (RBSI14U3VF).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1437_MOESM1_ESM.docx (158 kb)
ESM 1 (DOCX 160 kb)

References

  1. 1.
    Vaníček J, Miller WH, Castillo JF, Aoiz FJ (2005) Quantum-instanton evaluation of the kinetic isotope effects. J Chem Phys 123:054108.  https://doi.org/10.1063/1.1946740 CrossRefPubMedGoogle Scholar
  2. 2.
    Saueressig G, Bergamaschi P, Crowley JN et al (1996) D/H kinetic isotope effect in the reaction CH4+ Cl. Geophys Res Lett 23:3619–3622CrossRefGoogle Scholar
  3. 3.
    Valadbeigi Y, Farrokhpour H (2015) Theoretical study on the mechanism and kinetics of atmospheric reactions C n H2n+2 + NH2 (n = 1-3). Struct Chem 26:383–391.  https://doi.org/10.1007/s11224-014-0500-9 CrossRefGoogle Scholar
  4. 4.
    George IJ, Abbatt JPD (2010) Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat Chem 2:713–722.  https://doi.org/10.1038/nchem.806 CrossRefPubMedGoogle Scholar
  5. 5.
    Yelle RV, Cui J, Müller-Wodarg ICF (2008) Methance escape from Titan’s atmosphere. J Geophys Res Earth Planets 113:1–8.  https://doi.org/10.1029/2007JE003031 CrossRefGoogle Scholar
  6. 6.
    Zahnle KJ, Marley MS (2014) Methane, carbon monoxide, and ammonia in brown dwarfs and self-luminous giant planets. Astrophys J 797:1–19.  https://doi.org/10.1088/0004-637X/797/1/41 CrossRefGoogle Scholar
  7. 7.
    Raes F, Cofala J, Derwent R et al (2010) The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030. Atmos Chem Phys Discuss 4:8471–8538.  https://doi.org/10.5194/acpd-4-8471-2004 CrossRefGoogle Scholar
  8. 8.
    Wu T, Werner HJ, Manthe U (2006) Accurate potential energy surface and quantum reaction rate calculations for the H+CH4 → H2 +CH3 reaction. J Chem Phys 124:164307.  https://doi.org/10.1063/1.2189223 CrossRefPubMedGoogle Scholar
  9. 9.
    Schiffel G, Manthe U, Nyman G (2010) Full-dimensional quantum reaction rate calculations for H + CH4 → H2 + CH3 on a recent potential energy surface. J Phys Chem A 114:9617–9622.  https://doi.org/10.1021/jp911880u CrossRefPubMedGoogle Scholar
  10. 10.
    Suleimanov YV, Collepardo-Guevara R, Manolopoulos DE (2011) Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH4→ H2 + CH3. J Chem Phys 134:044131.  https://doi.org/10.1063/1.3533275 CrossRefPubMedGoogle Scholar
  11. 11.
    Welsch R, Manthe U (2012) Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H CH4 → H2 CH3 rate constants for different potentials. J Chem Phys 137:244106.  https://doi.org/10.1063/1.4772585 CrossRefPubMedGoogle Scholar
  12. 12.
    Meng Q, Chen J, Zhang DH (2015) Communication: rate coefficients of the H + CH4 → H2 + CH3 reaction from ring polymer molecular dynamics on a highly accurate potential energy surface. J Chem Phys 143:101102.  https://doi.org/10.1063/1.4930860 CrossRefPubMedGoogle Scholar
  13. 13.
    Mai TVT, Duong MV, Le XT et al (2014) Direct ab initio dynamics calculations of thermal rate constants for the CH4 + O2 = CH3 + HO2 reaction. Struct Chem 25:1495–1503.  https://doi.org/10.1007/s11224-014-0426-2 CrossRefGoogle Scholar
  14. 14.
    Czakó G, Bowman JM (2011) Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface. Science (80- ) 334:343–346.  https://doi.org/10.1126/science.1208514 CrossRefGoogle Scholar
  15. 15.
    Wang D (2013) Quantum Dynamics Study of the F + CH4 -> HF + CH3 Reaction on an Ab Initio Potential Energy Surface. J Phys Chem A 12:1350054.  https://doi.org/10.1142/s0219633613500545 CrossRefGoogle Scholar
  16. 16.
    Kurylo MJ, Hollinden GA, Timmons RB (1970) Esr study of the kinetic isotope effect in the reaction of H and D atoms with Ch4. J Chem Phys 52:1773–1781.  https://doi.org/10.1063/1.1673216 CrossRefGoogle Scholar
  17. 17.
    Baulch DL (1992) Evaluated kinetic data for combustion modeling of atom reactions. J Phys Chem Ref Data 21:757.  https://doi.org/10.1063/1.1748524 CrossRefGoogle Scholar
  18. 18.
    Camden JP, Bechtel HA, Brown DJA, Zare RN (2005) Effects of C-H stretch excitation on the H+CH4reaction. J Chem Phys 123:134301.  https://doi.org/10.1063/1.2034507 CrossRefPubMedGoogle Scholar
  19. 19.
    Baker RR, Baldwin RR, Walker RW (1971) The use of the H2+O2 reaction in determining the velocity constants of elementary reaction in hydrocarbon oxidation. Symp Combust 13:291–299.  https://doi.org/10.1016/S0082-0784(71)80032-2 CrossRefGoogle Scholar
  20. 20.
    Back RA, van der Auwera D (1962) The mercury-photosensitized decomposition of methane. Can J Chem 40:2339–2347.  https://doi.org/10.1139/v62-357 CrossRefGoogle Scholar
  21. 21.
    Marquaire P-M, Dastidar AG, Manthorne KC, Pacey PD (1994) Electron spin resonance study of the reaction of hydrogen atoms with methane. Can J Chem 72:600–605.  https://doi.org/10.1139/v94-083 CrossRefGoogle Scholar
  22. 22.
    Bryukov MG, Slagle IR, Knyazev VD (2001) Kinetics of reactions of Cl atoms with methane and chlorinated methanes. J Phys Chem A 105:3107–3122.  https://doi.org/10.1021/jp0257909 CrossRefGoogle Scholar
  23. 23.
    Sutherland JW, Su MC, Michael JV (2001) Rate constants for H + CH4, CH3 + H2, and CH4 dissociation at high temperature. Int J Chem Kinet 33:669–684.  https://doi.org/10.1002/kin.1064 CrossRefGoogle Scholar
  24. 24.
    Andersson S, Nyman G, Arnaldsson A, Manthe U (2009) Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the \ce{H+CH4} Reaction Rate. J Phys Chem A 113:4468–4478CrossRefGoogle Scholar
  25. 25.
    Zhou Y, Fu B, Wang C et al (2011) Ab initio potential energy surface and quantum dynamics for the H + CH4→ H2+ CH3 reaction. J Chem Phys 134:064323.  https://doi.org/10.1063/1.3552088 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou Y, Zhang DH (2015) Eight-dimensional quantum reaction rate calculations for the H + CH4 and H2 + CH3 reactions on recent potential energy surfaces. J Chem Phys 194307:194307.  https://doi.org/10.1063/1.4902005 CrossRefGoogle Scholar
  27. 27.
    Vikár A, Nagy T, Lendvay G (2016) Testing the Palma-Clary Reduced Dimensionality Model Using Classical Mechanics on the CH4 + H → CH3 + H2 Reaction. J Phys Chem A 120:5083–5093.  https://doi.org/10.1021/acs.jpca.6b00346 CrossRefPubMedGoogle Scholar
  28. 28.
    Van Harrevelt R, Nyman G, Manthe U (2007) Accurate quantum calculations of the reaction rates for HD+C H4. J Chem Phys 126:084303.  https://doi.org/10.1063/1.2464102 CrossRefPubMedGoogle Scholar
  29. 29.
    Li Y, Suleimanov YV, Li J et al (2013) Rate coefficients and kinetic isotope effects of the X + CH<inf>4</inf> ? CH<inf>3</inf> + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics. J Chem Phys 138:1–10.  https://doi.org/10.1063/1.4793394 CrossRefGoogle Scholar
  30. 30.
    Pu J, Truhlar DG (2002) Validation of variational transition state theory with multidimensional tunneling contributions against accurate quantum mechanical dynamics for H+CH4→H2+CH3 in an extended temperature interval. J Chem Phys 117:1479–1481.  https://doi.org/10.1063/1.1485063 CrossRefGoogle Scholar
  31. 31.
    Kerkeni B, Clary DC (2004) Kinetic isotope effects in the reactions of D atoms with CH 4 , C 2 H 6 , and CH 3 OH: quantum dynamics calculations . J Phys Chem A 108:8966–8972.  https://doi.org/10.1021/jp048440q CrossRefGoogle Scholar
  32. 32.
    Bunker DL, Pattengill MD (1970) Trajectory studies of hot-atom reactions. I. Tritium and methane. J Chem Phys 53:3041–3049.  https://doi.org/10.1063/1.1674447 CrossRefGoogle Scholar
  33. 33.
    Chapman S, Bunker DL (1975) An exploratory study of reactant vibrational effects in CH3+H2 and its isotopic variants. J Chem Phys 62:2890–2899.  https://doi.org/10.1063/1.430827 CrossRefGoogle Scholar
  34. 34.
    Raff LM (1974) Theoretical investigations of the reaction dynamics of polyatomic systems: chemistry of the hot atom (T* + CH4) and (T* + CD4) systems. J Chem Phys 60:2220–2244.  https://doi.org/10.1063/1.1681351 CrossRefGoogle Scholar
  35. 35.
    Yu H-G, Nyman G (2000) Interpolated ab initio quantum scattering for the reaction of OH with HCl. J Chem Phys 113:8936.  https://doi.org/10.1063/1.1319999 CrossRefGoogle Scholar
  36. 36.
    Wang D, Bowman JM (2001) A reduced dimensionality, six-degree-of-freedom, quantum calculation of the H+CH4→H2+CH3 reaction. J Chem Phys 115:2055–2061.  https://doi.org/10.1063/1.1383048 CrossRefGoogle Scholar
  37. 37.
    Huarte-Larrañaga F, Manthe U (2001) Quantum dynamics of the CH4 + H → CH3 + H2 reaction: full-dimensional and reduced dimensionality rate constant calculations †. J Phys Chem A 105:2522–2529.  https://doi.org/10.1021/jp003579w CrossRefGoogle Scholar
  38. 38.
    Takayanagi T (1996) Reduced dimensionality calculations of quantum reactive scattering for the H+CH4→H2+CH3 reaction. J Chem Phys 104:2237–2242.  https://doi.org/10.1063/1.470920 CrossRefGoogle Scholar
  39. 39.
    Li J, Chen J, Zhao Z et al (2015) A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system. J Chem Phys 142:204302.  https://doi.org/10.1063/1.4921412 CrossRefPubMedGoogle Scholar
  40. 40.
    Xu X, Chen J, Zhang DH (2014) Global potential energy surface for the H+CH<inf>4</inf>虠H<inf>2</inf>+CH<inf>3</inf> reaction using neural networks. Chin J Chem Phys 27:373–379.  https://doi.org/10.1063/1674-0068/27/04/373-379 CrossRefGoogle Scholar
  41. 41.
    Li Y, Suleimanov YV, Li J et al (2013) Rate coefficients and kinetic isotope effects of the X + CH 4 → CH 3 + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics. J Chem Phys 138:094307.  https://doi.org/10.1063/1.4793394 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhao Y, Yamamoto T, Miller WH (2004) Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H+CH4→H2+CH3hydrogen abstraction reaction in full Cartesian space. J Chem Phys 120:3100–3107.  https://doi.org/10.1063/1.1641006 CrossRefPubMedGoogle Scholar
  43. 43.
    Laude G, Calderini D, Tew DP, Richardson JO (2018) Ab initio instanton rate theory made efficient using Gaussian process regression. Faraday Discuss 212:237–258.  https://doi.org/10.1039/c8fd00085a CrossRefPubMedGoogle Scholar
  44. 44.
    Suleimanov YV, Aoiz FJ, Guo H (2016) Chemical reaction rate coefficients from ring polymer molecular dynamics: theory and practical applications. J Phys Chem A 120:8488–8502.  https://doi.org/10.1021/acs.jpca.6b07140 CrossRefPubMedGoogle Scholar
  45. 45.
    Neta P (1972) Reactions of hydrogen atoms in aqueous solutions. Chem Rev 72:533–543.  https://doi.org/10.1021/cr60279a005 CrossRefGoogle Scholar
  46. 46.
    Neta P, Shuler Robert H (1971) Rate Constants for Reaction of Hydrogen Atoms with Compounds of Biochemical. Radiat Res 47:612–627CrossRefGoogle Scholar
  47. 47.
    Neta P, Schuler RH (1972) Rate Constants for Reaction of Hydrogen Atoms with Aromatic and Heterocyclic Compounds. The Electrophilic Nature of Hydrogen Atom. J Am Chem Soc 94:1056–1059CrossRefGoogle Scholar
  48. 48.
    Mezyk SP, Bartels DM (2002) Rate of Hydrogen Atom Reaction with Ethanol, Ethanol- d 5 , 2-Propanol, and 2-Propanol- d 7 in Aqueous Solution †. J Phys Chem A 101:1329–1333.  https://doi.org/10.1021/jp9629957 CrossRefGoogle Scholar
  49. 49.
    Madden KP, Mezyk SP (2011) Critical Review of Aqueous Solution Reaction Rate Constants for Hydrogen Atoms. J Phys Chem Ref Data 40:023103.  https://doi.org/10.1063/1.3578343 CrossRefGoogle Scholar
  50. 50.
    Galano A, Alvarez-Idaboy JR (2014) Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods. J Comput Chem 35:2019–2026.  https://doi.org/10.1002/jcc.23715 CrossRefPubMedGoogle Scholar
  51. 51.
    Carvalho-Silva VH, Aquilanti V, de Oliveira HCB, Mundim KC (2017) Deformed transition-state theory: deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime. J Comput Chem 38:178–188.  https://doi.org/10.1002/jcc.24529 CrossRefPubMedGoogle Scholar
  52. 52.
    Claudino D, Gargano R, Carvalho-Silva VH et al (2016) Investigation of the abstraction and dissociation mechanism in the nitrogen trifluoride channels: combined post-Hartree–Fock and Transition State Theory approaches. J Phys Chem A 120:5464–5473CrossRefGoogle Scholar
  53. 53.
    Sanches-Neto FO, Coutinho ND, Carvalho-Silva VH (2017) A novel assessment of the role of the methyl radical and water formation channel in the CH3OH + H reaction. Phys ChemChem Phys 19:24467–24477.  https://doi.org/10.1039/C7CP03806B CrossRefGoogle Scholar
  54. 54.
    Santin LG, Toledo EM, Carvalho-Silva VH et al (2016) Methanol solvation effect on the proton rearrangement of curcumin’s enol forms: an ab initio molecular dynamics and electronic structure viewpoint. J Phys Chem C 120:19923–19931.  https://doi.org/10.1021/acs.jpcc.6b02393 CrossRefGoogle Scholar
  55. 55.
    Aquilanti V, Mundim KC, Elango M et al (2010) Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem Phys Lett 498:209–213.  https://doi.org/10.1016/j.cplett.2010.08.035 CrossRefGoogle Scholar
  56. 56.
    Aquilanti V, Coutinho ND, Carvalho-Silva VH (2017) Kinetics of Low-Temperature Transitions and Reaction Rate Theory from Non-Equilibrium Distributions. Philos Trans R Soc London A 375:20160204.  https://doi.org/10.1098/rsta.2016.0201 CrossRefGoogle Scholar
  57. 57.
    Aquilanti V, Borges EP, Coutinho ND et al (2018) From statistical thermodynamics to molecular kinetics: the change, the chance and the choice. Rend Lincei Sci Fis Nat 28:787–802.  https://doi.org/10.1007/s12210-018-0749-9 CrossRefGoogle Scholar
  58. 58.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CTGoogle Scholar
  59. 59.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  60. 60.
    Díaz MG, Andrada MF, Vega-Hissi EG, Martinez JCG (2019) Density functional theory study of the oxidation reaction in the gas and aqueous phase of allyl methyl disulfide with hydroxyl radical. Struct Chem 30:237–245.  https://doi.org/10.1007/s11224-018-1198-x CrossRefGoogle Scholar
  61. 61.
    Silva VHC, Aquilanti V, De Oliveira HCB, Mundim KC (2013) Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem Phys Lett 590:201–207.  https://doi.org/10.1016/j.cplett.2013.10.051 CrossRefGoogle Scholar
  62. 62.
    Takayanagi T (2004) Theory of Atom Tunneling Reactions in the Gas Phase. Springer, Berlin, pp 15–31Google Scholar
  63. 63.
    Bell RP (1980) The Tunnel Effect in Chemistry. Champman and Hall, LondonCrossRefGoogle Scholar
  64. 64.
    Collins FC, Kimball GE (1949) Diffusion-Controlled Reactions in Liquid Solutions. Ind Eng Chem 41:2551–2553.  https://doi.org/10.1021/ie50479a040 CrossRefGoogle Scholar
  65. 65.
    Smoluchowski MV (1916) Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Phys Z 17:557–585Google Scholar
  66. 66.
    Onsager L (1936) Electric Moments of Molecules in Liquids. J Am Chem Soc 58:1486–1493.  https://doi.org/10.1021/ja01299a050 CrossRefGoogle Scholar
  67. 67.
    Johnson III, Russell D (2013) Computational chemistry comparison and benchmark database. In: NIST Stand. Ref. database, 69. http://www.boulder.nist.gov/div838/tar/file02.html. Accessed 12 Apr 2017
  68. 68.
    Corchado JC, Bravo JL, Espinosa-Garcia J (2009) The hydrogen abstraction reaction H+ CH4. I. New analytical potential energy surface based on fitting to ab initio calculations. J Chem Phys 130:184314.  https://doi.org/10.1063/1.3132223 CrossRefPubMedGoogle Scholar
  69. 69.
    Beyer AN, Richardson JO, Knowles PJ et al (2016) Quantum Tunneling Rates of Gas-Phase Reactions from On-the-Fly Instanton Calculations. J Phys Chem Lett 7:4374–4379.  https://doi.org/10.1021/acs.jpclett.6b02115 CrossRefPubMedGoogle Scholar
  70. 70.
    Karandashev K, Xu ZH, Meuwly M et al (2017) Kinetic isotope effects and how to describe them. Struct Dyn 4:1–20.  https://doi.org/10.1063/1.4996339 CrossRefGoogle Scholar
  71. 71.
    Jacobsen RL, Johnson RD, Irikura KK, Kacker RN (2013) Anharmonic Vibrational Frequency Calculations Are Not Worthwhile for Small Basis Sets. J Chem Theory Comput 9:951–954.  https://doi.org/10.1021/ct300293a CrossRefPubMedGoogle Scholar
  72. 72.
    Kashinski DO, Chase GM, Nelson RG et al (2017) Harmonic vibrational frequencies: approximate global scaling factors for TPSS, M06, and M11 functional families using several common basis sets. J Phys Chem A 121:2265–2273.  https://doi.org/10.1021/acs.jpca.6b12147 CrossRefPubMedGoogle Scholar
  73. 73.
    Carvalho-Silva VH, Coutinho ND, Aquilanti V (2019) Temperature dependence of rate processes beyond arrhenius and eyring: activation and transitivity. Front Chem 7:380.  https://doi.org/10.3389/fchem.2019.00380 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494.  https://doi.org/10.1021/ed061p494 CrossRefGoogle Scholar
  75. 75.
    Coutinho ND, Silva VHC, Mundim KC, de Oliveira HCB (2015) Description of the effect of temperature on food systems using the deformed Arrhenius rate law: deviations from linearity in logarithmic plots vs. inverse temperature. Rend Lincei 26:141–149.  https://doi.org/10.1007/s12210-015-0407-4 CrossRefGoogle Scholar
  76. 76.
    Coutinho ND, Silva VHC, de Oliveira HCB et al (2015) Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J Phys Chem Lett 6:1553–1558.  https://doi.org/10.1021/acs.jpclett.5b00384 CrossRefPubMedGoogle Scholar
  77. 77.
    Schuler RH, Neta P, Fessenden RW (1971) Electron spin resonance study of the rate constants for reaction of hydrogen atoms with organic compounds in aqueous solution. J Phys Chem 75:1654–1666.  https://doi.org/10.1021/j100906a004 CrossRefGoogle Scholar
  78. 78.
    Li G, Li Q-S, Xie Y, Schaefer HF (2015) From gas-phase to liquid-water chemical reactions: the fluorine atom plus water trimer system. Angew Chem Int Ed 54:11223–11226.  https://doi.org/10.1002/anie.201505075 CrossRefGoogle Scholar
  79. 79.
    Li G, Xie Y, Schaefer HF (2016) From gas-phase to liquid water chemical reactions: the F + (H2O)n, n = 1–4 systems. Chem Phys Lett 648:1–7.  https://doi.org/10.1016/J.CPLETT.2016.01.014 CrossRefGoogle Scholar
  80. 80.
    Li G, Wang H, Li Q-S et al (2016) The reaction between bromine and the water dimer and the highly exothermic reverse reaction. J Comput Chem 37:177–182.  https://doi.org/10.1002/jcc.23951 CrossRefPubMedGoogle Scholar
  81. 81.
    Li G, Wang H, Li Q-S et al (2014) The exothermic HCl + OH·(H 2 O) reaction: removal of the HCl + OH barrier by a single water molecule. J Chem Phys 140:124316.  https://doi.org/10.1063/1.4869518 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-GraduaçãoUniversidade Estadual de GoiásAnapolisBrazil
  2. 2.Instituto de QuímicaUniversidade de BrasíliaBrasiliaBrazil
  3. 3.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly

Personalised recommendations