Performance studies of CO2 transformation to methanol by zwitterionic indenylammonium derivatives as a new class of carbon-centered organocatalysts

  • Mansoureh Rakhshanipour
  • Hossein Sabet-Sarvestani
  • Hossein EshghiEmail author
Original Research


Theoretical studies of carbon-centered organocatalysts for CO2 activation and mechanism studies for its conversion to methanol are the purposes of this research. Three possible pathways are proposed in this study for methanol production from CO2 and 9-BBN. Two distinct mechanisms can be considered for CO2 activation, which include an insertion reaction and a two-step reaction. The activation strain model (ASM) and electron localization function (ELF) concepts were applied for justification of the nucleophilic attack behavior of the studied organocatalysts in CO2 activation. Proton transfer in step 2 of the CO2 activation is studied as the rate-determining step of the reaction by nuclear-independent chemical shift (NICS-XY) scan. The results show that a lower absolute value of NICSnZZ in the case of organocatalysts with an electron-withdrawing group represents a higher stabilization in developing π-electron on the five-member ring of the organocatalysts and a lower ∆G value than the other ones. Finally, the organocatalysts with the electron withdrawing substituents are kinetically and thermodynamically the best candidates for CO2 activation based on various different analyses.


Carbon-centered organocatalysts Methanol Carbon dioxide ELF concept ASM model NICS-XY 



The Research Council of the Ferdowsi University of Mashhad is gratefully acknowledged for the financial support of this project (Grant No. 3/45880). Also, we hereby acknowledge that some parts of this computation were performed in the HPC center of the Ferdowsi University of Mashhad.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1436_MOESM1_ESM.pdf (316 kb)
ESM 1 (PDF 315 kb)


  1. 1.
    Liu Q, Wu L, Jackstell R, Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 6(1):5933–5947. CrossRefPubMedGoogle Scholar
  2. 2.
    Song Q-W, Zhou Z-H, He L-N (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19(16):3707–3728. CrossRefGoogle Scholar
  3. 3.
    Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge. Angew Chem Int Ed 50(37):8510–8537. CrossRefGoogle Scholar
  4. 4.
    Ribeiro AP, Martins LM, Pombeiro AJ (2017) Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(II) catalyst. Green Chem 19(20):4811–4815. CrossRefGoogle Scholar
  5. 5.
    Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. CrossRefGoogle Scholar
  6. 6.
    Suib SL (2013) New and future developments in catalysis: activation of carbon dioxide. Elsevier Science & Technology, AmsterdamGoogle Scholar
  7. 7.
    Fiorani G, Guo W, Kleij AW (2015) Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chem 17(3):1375–1389. CrossRefGoogle Scholar
  8. 8.
    Takimoto M, Kawamura M, Mori M (2003) Nickel (0)-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes. Org Lett 5(15):2599–2601. CrossRefPubMedGoogle Scholar
  9. 9.
    Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81. CrossRefGoogle Scholar
  10. 10.
    Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms. Coord Chem Rev 255(13-14):1460–1479. CrossRefGoogle Scholar
  11. 11.
    Lu X-B, Ren W-M, Wu G-P (2012) CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc Chem Res 45(10):1721–1735. CrossRefPubMedGoogle Scholar
  12. 12.
    Kimura T, Kamata K, Mizuno N (2012) A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed 51(27):6700–6703. CrossRefGoogle Scholar
  13. 13.
    Correa A, Leon T, Martin R (2014) Ni-catalyzed carboxylation of C(sp2)- and C(sp3)-O bonds with CO2. J Am Chem Soc 136(3):1062–1069. CrossRefPubMedGoogle Scholar
  14. 14.
    Li Y-N, Ma R, He L-N, Diao Z-F (2014) Homogeneous hydrogenation of carbon dioxide to methanol. Catal Sci Technol 4(6):1498–1512. CrossRefGoogle Scholar
  15. 15.
    Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44(18):2636–2639. CrossRefGoogle Scholar
  16. 16.
    Kunkes E, Behrens M (2013) In: Schlögl R (ed) Chemical energy storage. Walter de Gruyter, Berlin. CrossRefGoogle Scholar
  17. 17.
    Cañete B, Gigola CE, Brignole NB (2014) Synthesis gas processes for methanol production via CH4 reforming with CO2, H2O, and O2. Ind Eng Chem Res 53(17):7103–7112. CrossRefGoogle Scholar
  18. 18.
    Crabtree RH (2010) Energy production and storage: inorganic chemical strategies for a warming world. Wiley, UKGoogle Scholar
  19. 19.
    Monassier A, D'Elia V, Cokoja M, Dong H, Pelletier JD, Basset JM, Kühn FE (2013) Synthesis of cyclic carbonates from epoxides and CO2 under mild conditions using a simple, highly efficient niobium-based catalyst. Chem Cat Chem 5(6):1321–1324. CrossRefGoogle Scholar
  20. 20.
    He Q, O'Brien JW, Kitselman KA, Tompkins LE, Curtis GC, Kerton FM (2014) Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride-metal halide mixtures. Catal Sci Technol 4(6):1513–1528. CrossRefGoogle Scholar
  21. 21.
    Whiteoak CJ, Kielland N, Laserna V, Escudero-Adán EC, Martin E, Kleij AW (2013) A powerful aluminum catalyst for the synthesis of highly functional organic carbonates. J Am Chem Soc 135(4):1228–1231. CrossRefPubMedGoogle Scholar
  22. 22.
    Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J (2009) A systematic investigation of factors influencing the decarboxylation of imidazolium carboxylates. J Organomet Chem 74(20):7935–7942. CrossRefGoogle Scholar
  23. 23.
    Yang Y, Yan L, Xie Q, Liang Q, Song D (2017) Zwitterionic indenylammonium with carbon-centred reactivity towards reversible CO2 binding and catalytic reduction. Org Biomol Chem 15(10):2240–2245. CrossRefPubMedGoogle Scholar
  24. 24.
    Grice KA, Groenenboom MC, Manuel JDA, Sovereign MA, Keith JA (2015) Examining the selectivity of borohydride for carbon dioxide and bicarbonate reduction in protic conditions. Fuel 150:139–145. CrossRefGoogle Scholar
  25. 25.
    Li P, Henkelman G, Keith JA, Johnson JK (2014) Elucidation of aqueous solvent-mediated hydrogen-transfer reactions by ab initio molecular dynamics and nudged elastic-band studies of NaBH4 hydrolysis. J Phys Chem C 118(37):21385–21399. CrossRefGoogle Scholar
  26. 26.
    Sabet-Sarvestani H, Izadyar M, Eshghi H (2017) Theoretical evaluation of the organocatalytic behavior of the negatively charged carbon atom in a fused five-member ring in carbon dioxide transformation to methanol. Energy 134:493–503. CrossRefGoogle Scholar
  27. 27.
    Sabet-Sarvestani H, Izadyar M, Eshghi H (2017) Phosphorus ylides as a new class of compounds in CO2 activation: thermodynamic and kinetic studies. J CO2 UTIL 21:459–466 CrossRefGoogle Scholar
  28. 28.
    Sabet-Sarvestani H, Eshghi H, Izadyar M (2017) Understanding the mechanism, thermodynamic and kinetic features of the Kukhtin-Ramirez reaction in carbamate synthesis from carbon dioxide. RSC Adv 7(3):1701–1710. CrossRefGoogle Scholar
  29. 29.
    Sabet-Sarvestani H, Eshghi H, Izadyar M, Noroozi-Shad N, Bakavoli M, Ziaee F (2016) Borohydride salts as high efficiency reducing reagents for carbon dioxide transformation to methanol: theoretical approach. Int J Hydrog Energy 41(26):11131–11140. CrossRefGoogle Scholar
  30. 30.
    Sabet-Sarvestani H, Izadyar M, Eshghi H, Noroozi-Shad N (2018) Understanding the thermodynamic and kinetic performances of the substituted phosphorus ylides as a new class of compounds in carbon dioxide activation. Energy 145:329–337. CrossRefGoogle Scholar
  31. 31.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 1. Gaussian, Inc, WallingfordGoogle Scholar
  32. 32.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241. CrossRefGoogle Scholar
  33. 33.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17(1):49–56.<49::AID-JCC5>3.0.CO;2-0 CrossRefGoogle Scholar
  34. 34.
    Fukui K (1970) Formulation of the reaction coordinate. J Phys Chem 74(23):4161–4163. CrossRefGoogle Scholar
  35. 35.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255(4-6):327–335. CrossRefGoogle Scholar
  36. 36.
    Polo V, Andres J, Berski S, Domingo LR, Silvi B (2008) Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology. J Phys Chem A 112(31):7128–7136. CrossRefPubMedGoogle Scholar
  37. 37.
    Andres J, Berski S, Domingo LR, Polo V, Silvi B (2011) Describing the molecular mechanism of organic reactions by using topological analysis of electronic localization function. Curr Org Chem 15(20):3566–3575. CrossRefGoogle Scholar
  38. 38.
    Andrés J, Berski S, Domingo LR, González-Navarrete P (2012) Nature of the ring-closure process along the rearrangement of octa-1,3,5,7-tetraene to cycloocta-1,3,5-triene from the perspective of the electron localization function and catastrophe theory. J Comput Chem 33(7):748–756. CrossRefPubMedGoogle Scholar
  39. 39.
    Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614(1-3):3–10. CrossRefGoogle Scholar
  40. 40.
    Domingo LR, Chamorro E, Pérez P (2010) Understanding the high reactivity of the azomethine ylides in [3+2] cycloaddition reactions. Lett Org Chem 7(6):432–439. CrossRefGoogle Scholar
  41. 41.
    Emamian S (2015) Polar Diels-Alder reaction of isoprene toward 2-bromocyclobutenone followed by a subsequent sodium hydroxide-assisted ring contraction reaction. A regio-and stereoselectivity and molecular mechanism study using DFT. New J Chem 39(12):9525–9534. CrossRefGoogle Scholar
  42. 42.
    Joule JA, Mills K (2010) Heterocyclic chemistry. Wiley, UKGoogle Scholar
  43. 43.
    Najmidin K, Kerim A, Abdirishit P, Kalam H, Tawar T (2013) A comparative study of the aromaticity of pyrrole, furan, thiophene, and their aza-derivatives. J Mol Model 19(9):3529–3535. CrossRefPubMedGoogle Scholar
  44. 44.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105(10):3842–3888. CrossRefPubMedGoogle Scholar
  45. 45.
    Stanger A (2010) Obtaining relative induced ring currents quantitatively from NICS. J Organomet Chem 75(7):2281–2288. CrossRefGoogle Scholar
  46. 46.
    Schleyer PV, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318. CrossRefPubMedGoogle Scholar
  47. 47.
    Gershoni-Poranne R, Stanger A (2014) The NICS-XY-Scan: identification of local and global ring currents in multi-ring systems. Chem-A Eur J 20(19):5673–5688. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations