Hydrogen abstraction of methanimine by X12N12 (X = B, Al) nanoclusters: a DFT study

  • Rezvan Rahimi
  • Mohammad SolimannejadEmail author
Original Research


In this work, dissociative adsorption of methanimine (CH2NH) on the surface of B12N12 and Al12N12 nanoclusters is studied at wB97XD/6-31G(d) computational level. The results indicate that the CH2NH molecule is adsorbed on the surface of studied nanocages with remarkable adsorption energies and noticeable charge transfer. The main reaction channel generated a HCN molecule and two hydrogen atoms on a cage. It is predicted that the Al12N12 nanocage is the more suitable catalyst for the disintegration of CH2NH than B12N12. The results of the present study may be useful for extensive usage of BN and AlN nanostructures as a catalyst for dissociation of imines.


CH2NH B12N12 Al12N12 DFT 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhou J, Bernhard, Schlegel H (2009) Ab initio classical trajectory study of the dissociation of neutral and positively charged methanimine (CH2NHn+ n = 0-2). J Phys Chem A 113:9958–9964CrossRefGoogle Scholar
  2. 2.
    Johnson DR, Lovas FJ (1972) Microwave detection of the molecular transient methyleneimine (CH2=NH). Chem Phys Lett 15:65–68CrossRefGoogle Scholar
  3. 3.
    Teslja A, Nizamov B, Dagdigian PJ (2004) The electronic spectrum of methyleneimine. J Phys Chem A 108:4433–4439CrossRefGoogle Scholar
  4. 4.
    Dickens JE, Irvine WM, DeVries CH, Ohishi M (2002) Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH). Astrophys J 479:307–312CrossRefGoogle Scholar
  5. 5.
    Yelle R, V, Vuitton V, Lavvas P, Klippenstein S.J, Smith M.A, Hörst S.M, Cui JN (2010) Formation of NH3 and CH2NH in Titan’s upper atmosphere. Faraday Discuss 147: 31–49Google Scholar
  6. 6.
    Balucani N, Leonori F, Petrucci R, Stazi M, Skouteris D, Rosi M, Casavecchia P (2010) Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss 147:189–216CrossRefGoogle Scholar
  7. 7.
    Zareipour R, Vahedpour M (2019) Atmospheric reaction pathways of methanimine and nitroxyl: a theoretical study. Struct Chem 1:11Google Scholar
  8. 8.
    Akbar Ali M, B M, Lin KC (2018) Catalytic effect of a single water molecule on the OH + CH 2 NH reaction. Phys Chem Chem Phys 20:4297–4307CrossRefGoogle Scholar
  9. 9.
    Ali MA, Sonk JA, Barker JR (2016) Predicted chemical activation rate constants for HO2 + CH2NH: the dominant role of a hydrogen-bonded pre-reactive complex. J Phys Chem A 120:7060–7070CrossRefGoogle Scholar
  10. 10.
    Bunkan AJC, Tang Y, Sellevåg SR, Nielsen CJ (2014) Atmospheric gas phase chemistry of CH 2 =NH and HNC. A first-principles approach. J Phys Chem A 118:5279–5288CrossRefGoogle Scholar
  11. 11.
    Gong S, Wang C, Li Q (2012) Theoretical study of the mechanisms and rate constants on the reaction of H2CNH with O(3P). Comput Theor Chem 991:141–149CrossRefGoogle Scholar
  12. 12.
    Rosi M, Falcinelli S, Balucani N, Casavecchia P, Skouteris D (2013) A theoretical study of formation routes and dimerization of methanimine and implications for the aerosols formation in the upper atmosphere of titan. Lect Notes Comput Sci:47–56Google Scholar
  13. 13.
    Xu S, Zhang M, Zhao Y, Chen B, Zhang J, Sun C-C (2006) Stability and property of planar (BN)x clusters. Chem Phys Lett 423:212–214CrossRefGoogle Scholar
  14. 14.
    Esrafili MD, Nurazar R (2014) Methylamine adsorption and decomposition on B12N12 nanocage: a density functional theory study. Surf Sci 626:44–48CrossRefGoogle Scholar
  15. 15.
    Wu HS, Jiao H (2004) What is the most stable B24N24 fullerene? Chem Phys Lett 386:369–372CrossRefGoogle Scholar
  16. 16.
    Seifert G, Fowler PW, Mitchell D, Porezag D, Frauenheim T (1997) Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem Phys Lett 268:352–358CrossRefGoogle Scholar
  17. 17.
    Wu H-S, Cui X-Y, Xu X-H (2005) Structure and stability of boron nitrides: isomer of B32N32. J Mol Struct 717:107–109CrossRefGoogle Scholar
  18. 18.
    Wu H-S, Cui X-Y, Qin X-F, Jiao H (2005) Structure and stability of boron nitrides: the B28N28 isomers. J Mol Struct 714:153–155CrossRefGoogle Scholar
  19. 19.
    Oku T, Kuno M, Kitahara H, Narita I (2001) Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int J Inorg Mater 3:597–612CrossRefGoogle Scholar
  20. 20.
    Oku T, Narita I, Nishiwaki A, Koi N (2009) Atomic structures, electronic states and hydrogen storage of boron nitride nanocage clusters Defect Diffus. Forum 226:113–140Google Scholar
  21. 21.
    Oku T, Nishiwaki A, Narita I (2004) Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci Technol Adv Mater 635:638Google Scholar
  22. 22.
    Esrafili MD, Heydari S (2018) Carbon-doped boron-nitride fullerenes as efficient metal-free catalysts for oxidation of SO2: a DFT study. Struct Chem 29:275–283CrossRefGoogle Scholar
  23. 23.
    Vessally E, Ahmadi E, Alibabaei S, Esrafili MD, Hosseinian A (2017) Adsorption and decomposition of formaldehyde on the B12N12 nanostructure: a density functional theory study. Monatshefte FurChemie 148:1727–1731CrossRefGoogle Scholar
  24. 24.
    Esrafili MD (2017) N2O reduction over a fullerene-like boron nitride nanocage: a DFT study. Phys Lett A 381:2085–2091CrossRefGoogle Scholar
  25. 25.
    Esrafili MD, Behzadi H (2013) A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies. J Mol Model 19:2375–2382CrossRefGoogle Scholar
  26. 26.
    Zhang D, Feng W, Liu H, Huang X, Yang G (2018) Dissociation and oxidation mechanism of methanol on Al12N12 cage: a DFT study. Theor Chem Accounts 137:113CrossRefGoogle Scholar
  27. 27.
    Esrafili MD, Nurazar R (2014) A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage. Superlattice Microst 67:54–60CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  29. 29.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  30. 30.
    Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09 revision a 02. Gaussian Inc, Wallingford, p 200Google Scholar
  31. 31.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845CrossRefGoogle Scholar
  32. 32.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesArak UniversityArakIran
  2. 2.Institute of Nanosciences and NanotechnologyArak UniversityArakIran

Personalised recommendations