Advertisement

Ab initio study of aerogen-bonds between some heterocyclic compounds of benzene with the noble gas elements (Ne, Ar, and Kr)

  • Sadeghali Bavafa
  • Alireza NowrooziEmail author
  • Ali Ebrahimi
Original Research
  • 18 Downloads

Abstract

Ab initio calculations have been performed to study the complexes between the noble gas elements (Ae = Ne, Ar, Kr) with a series of benzene isoelectronic heterocyclic compounds of benzene, including boraphosphinine (BP), borazine (BN), and alumazine (AlN), at MP2/Aug-CC-pVTZ level of theory. According to the molecular electrostatic potential (MEP) iso-surface of BP, BN, and AlN, the active sites of rings are identified which utilized to predict the relative strength of aerogen···π (Ae···π) interactions as follows: Kr···π > Ar···π > Ne···π/Ae···BP > Ae···BN > Ae···AlN. Then, the equilibrium structures of all the complexes are characterized, and their energetic, geometrical, topological, and molecular orbital descriptors were used to estimate the strength of Ae···π interactions, that are in line with MEP results. Energy decomposition analysis reveals that dispersion effects play a vital role in formation of the Ae···π complexes. Furthermore, intermolecular interactions were also investigated with the quantum theory of atoms in molecules (QTAIM) and the non-covalent interactions (NCI) and natural bond orbital’s (NBO) analysis. NBO analysis showed that like the benzene complexes, charge transfers from the noble gas atom to heterocyclic ring have occurred. Finally, the aromaticity of the rings is measured using the well-established indices namely the nucleus independent chemical shift (NICS) and the average two-center index (ATI).

Keywords

Non-covalent interaction (NCI) Aerogen···π Boraphosphinine (BP) Borazine (BN) Alumazine (AlN) 

Notes

References

  1. 1.
    Janiak C (2000) A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans 21:3885–3896Google Scholar
  2. 2.
    Bavafa S, Nowroozi A, Ebrahimi A (2019) Quantum chemical study of the nature of interactions between the boraphosphinine and alumaphosphinine with some of the mono- and divalent cations: cation–π or cation–lone pair? Struct Chem.  https://doi.org/10.1007/s11224-019-01320-1
  3. 3.
    Dougherty DA (2012) The cation− π interaction. Acc Chem Res 46:885–893CrossRefGoogle Scholar
  4. 4.
    Ma JC, Dougherty DA (1997) The cation− π interaction. Chem Rev 97:1303–1324CrossRefGoogle Scholar
  5. 5.
    Ballester P (2012) Experimental quantification of anion− π interactions in solution using neutral host–guest model systems. Acc Chem Res 46:874–884CrossRefGoogle Scholar
  6. 6.
    Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-π interactions. Chem Soc Rev 37:68–83CrossRefGoogle Scholar
  7. 7.
    Mooibroek TJ, Gamez P, Reedijk J (2008) Lone pair–π interactions: a new supramolecular bond? CrystEngComm 10:1501–1515CrossRefGoogle Scholar
  8. 8.
    Egli M, Sarkhel S (2007) Lone pair− aromatic interactions: to stabilize or not to stabilize. Acc Chem Res 40:197–205CrossRefGoogle Scholar
  9. 9.
    Mani D, Arunan E (2014) The X–C··· π (X = F, Cl, Br, Cn) Carbon Bond. J Phys Chem A 118:10081–10089CrossRefGoogle Scholar
  10. 10.
    Nziko VPN, Scheiner S (2015) S··· π Chalcogen bonds between SF2 or SF4 and C–C multiple bonds. J Phys Chem A 119:5889–5897CrossRefGoogle Scholar
  11. 11.
    Estarellas C, Frontera A, Quinonero D, Alkorta I, Deya PM, Elguero J (2009) Energetic vs synergetic stability: a theoretical study. J Phys Chem A 113:3266–3273CrossRefGoogle Scholar
  12. 12.
    Bauzá Riera A, Quiñonero Santiago D, Frontera BA (2018) Pnicogen-pi complexes: theoretical study and biological implications. Phys Chem Chem Phys, 2012 14(40):14061–14066CrossRefGoogle Scholar
  13. 13.
    Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842CrossRefGoogle Scholar
  14. 14.
    Mahadevi AS, Sastry GN (2012) Cation− π interaction: Its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138CrossRefGoogle Scholar
  15. 15.
    Subramanian S, Zaworotko MJ (1994) Exploitation of the hydrogen bond: recent developments in the context of crystal engineering. Coord Chem Rev 137:357–401CrossRefGoogle Scholar
  16. 16.
    Steed JW, Atwood JL (2009) Supramolecular chemistry. Wiley, WiltshireCrossRefGoogle Scholar
  17. 17.
    Tan Z, Li AY (2018) Noble gas supported boron-pentagonal clusters B 5 Ng n 3+: exploring the structures and bonding. J Mol Model 24:90CrossRefGoogle Scholar
  18. 18.
    Zierkiewicz W, Michalczyk M, Scheiner S (2018) Aerogen bonds formed between AeOF 2 (Ae = Kr, Xe) and diazines: comparisons between σ-hole and π-hole complexes. Phys Chem Chem Phys 20:4676–4687CrossRefGoogle Scholar
  19. 19.
    Miao J, Gao Y (2017) The switch of the binding behaviours between Xe and π system induced by the change of oxidation state of Cu ion. Mol Simul 43:1256–1259CrossRefGoogle Scholar
  20. 20.
    Gao M, Cheng J, Li W, Xiao B, Li Q (2016) The aerogen–π bonds involving π systems. Chem Phys Lett 651:50–55CrossRefGoogle Scholar
  21. 21.
    Esrafili MD, Mousavian P, Mohammadian-Sabet F (2019) Tuning of pnicogen and chalcogen bonds by an aerogen-bonding interaction: a comparative ab initio study. Mol Phys 117:58–66CrossRefGoogle Scholar
  22. 22.
    Bauzá A, Frontera A (2015) Theoretical study on the dual behavior of XeO3 and XeF4 toward aromatic rings: lone pair–π versus aerogen–π interactions. ChemPhysChem 16:3625–3630CrossRefGoogle Scholar
  23. 23.
    Quiñonero D, Frontera A, Deyà PM (2012) Interplay between ion–π and Ar/π Van der Waals interactions. Comput Theor Chem 998:51–56CrossRefGoogle Scholar
  24. 24.
    Bartlett N (1962) Xenon hexafluoroplatinate (V) Xe + [PtF6]. Royal Soc Chemistry Thomas Graham House, Science Park, Milton Rd, Cambridge, p 218Google Scholar
  25. 25.
    Claassen HH, Selig H, Malm JG (1962) Xenon tetrafluoride. J Am Chem Soc 84:3593CrossRefGoogle Scholar
  26. 26.
    Hoppe R, Dähne W, Mattauch H, Rödder K (1962) Fluorination of xenon. Angew Chem Int Ed Engl 1:599CrossRefGoogle Scholar
  27. 27.
    Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chem Int Ed 54:7340–7343CrossRefGoogle Scholar
  28. 28.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729CrossRefGoogle Scholar
  29. 29.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  30. 30.
    Miao J, Song B, Gao Y (2015) Is aerogen–π interaction capable of initiating the noncovalent chemistry of group 18? Chem Asian J 10:2615–2618CrossRefGoogle Scholar
  31. 31.
    Esrafili MD, Asadollahi S (2016) Strengthening of the halogen-bonding by an aerogen bond interaction: substitution and cooperative effects in O3Z··· NCX··· NCY (Z = Ar, Kr, Xe; X = Cl, Br, I; Y = H, F, OH) complexes. Mol Phys 114:2177–2186CrossRefGoogle Scholar
  32. 32.
    Miao J, Song B, Gao Y (2016) Enhanced aerogen–π interaction by a cation–π force. Chem Eur J 22:2586–2589CrossRefGoogle Scholar
  33. 33.
    Suresh CH, Mohan N, Della TD (2018) A noncovalent binding strategy to capture noble gases, hydrogen and nitrogen. J Comput Chem 39:901–908CrossRefGoogle Scholar
  34. 34.
    Tarakeshwar P, Kim KS, Kraka E, Cremer D (2001) Structure and stability of fluorine-substituted benzene-argon complexes: the decisive role of exchange-repulsion and dispersion interactions. J Chem Phys 115:6018–6029CrossRefGoogle Scholar
  35. 35.
    Schmies M, Patzer A, Fujii M, Dopfer O (2011) Structures and IR/UV spectra of neutral and ionic phenol–Ar n cluster isomers (n ≤ 4): competition between hydrogen bonding and stacking. Phys Chem Chem Phys 13:13926–13941CrossRefGoogle Scholar
  36. 36.
    Cao Q, Andrijchenko N, Ermilov A, Räsänen M, Nemukhin A, Khriachtchev L (2014) Interaction of aromatic compounds with xenon: spectroscopic and computational characterization for the cases of p-cresol and toluene. J Phys Chem A 119:2587–2593CrossRefGoogle Scholar
  37. 37.
    López-Tocón I, Otero J, Becucci M, Pietraperzia G, Castellucci E (1999) The aniline–argon van der Waals complex: ab initio second-order Møller–Plesset study of the potential energy surface in the ground electronic state. Chem Phys 249:113–120CrossRefGoogle Scholar
  38. 38.
    Hobza P, Selzle H, Schlag E (1991) Ab initio calculations on the structure, stabilization, and dipole moment of benzene Ar complex. J Chem Phys 95:391–394CrossRefGoogle Scholar
  39. 39.
    Hobza P, Bludský O, Selzle HL, Schlag EW (1996) Ab initio calculations on the structure, vibrational frequencies, and valence excitation energies of the benzene … Ar and benzene … Ar2 cluster. Chem Phys Lett 250:402–408CrossRefGoogle Scholar
  40. 40.
    Hobza P, Bludský O, Selzle H, Schlag E (1992) Ab initio second-and fourth-order Mo/ller–Plesset study on structure, stabilization energy, and stretching vibration of benzene··· X (X = He, Ne, Ar, Kr, Xe) van der Waals molecules. J Chem Phys 97:335–340CrossRefGoogle Scholar
  41. 41.
    Hobza P, Selzle H, Schlag E (1993) Properties of fluorobenzene··· Ar and p-difluorobenzene Ar complexes: ab initio study. J Chem Phys 99:2809–2811CrossRefGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneM LX, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C (2003) Pople JA Gaussian 03 revision C 02 (or D 01). Gaussian Inc, PittsburghGoogle Scholar
  43. 43.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592Google Scholar
  44. 44.
    Boys SF, Fd B (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  45. 45.
    Millam J, Eppinnett K, Hovell W, Gilliland R (2003) GaussView. Shawnee Mission. KS, Semichem IncGoogle Scholar
  46. 46.
    Keith TA (2013) AIMAll (Version 13.05. 06). TK Gristmill Software, Overland Park, KS, USAGoogle Scholar
  47. 47.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  48. 48.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096CrossRefGoogle Scholar
  49. 49.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar
  50. 50.
    Glendening E, Reed A, Carpenter J, Weinhold F (2001) NBO. Theoretical Chemistry Institute, University of Wisconsin, Madison, USAGoogle Scholar
  51. 51.
    Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718CrossRefGoogle Scholar
  52. 52.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  53. 53.
    Schleyer PR, Manoharan M, Wang Z-X, Kiran B, Jiao H et al (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3:2465–2468CrossRefGoogle Scholar
  54. 54.
    Hameka H (1958) On the nuclear magnetic shielding in the hydrogen molecule. Mol Phys 1:203–215CrossRefGoogle Scholar
  55. 55.
    Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202CrossRefGoogle Scholar
  56. 56.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev: Comput Mol Sci 1:153–163Google Scholar
  57. 57.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkGoogle Scholar
  58. 58.
    Rezvani Rad O, Nowrozi A (2018) Anion˗ π and intramolecular hydrogen bond interactions in the various complexes of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene with H-, F-, Cl-and Br-anions. Phys Chem Res 6:251–262Google Scholar
  59. 59.
    Ebrahimi A, Razmazma H, Samareh DH (2016) The nature of halogen bonds in [N∙∙∙ X∙∙∙ N] + complexes: a theoretical study. Phys Chem Res 4:1–15Google Scholar
  60. 60.
    Bania KK, Guha AK, Bhattacharyya PK, Sinha S (2014) Effect of substituent and solvent on cation–π interactions in benzene and borazine: a computational study. Dalton Trans 43:1769–1784CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Xu Z (1995) Atomic radii of noble gas elements in condensed phases. Am Mineral 80:670–675CrossRefGoogle Scholar
  62. 62.
    Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Putting anion–π interactions into perspective. Angew Chem Int Ed 50:9564–9583CrossRefGoogle Scholar
  63. 63.
    Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the ab initio limit for π−π interactions: The benzene dimer. J Am Chem Soc 124:10887–10893CrossRefGoogle Scholar
  64. 64.
    Soteras I, Orozco M, Luque FJ (2008) Induction effects in metal cation–benzene complexes. Phys Chem Chem Phys 10:2616–2624CrossRefGoogle Scholar
  65. 65.
    Varadwaj A, Varadwaj PR, Marques HM, Yamashita K (2018) A DFT assessment of some physical properties of iodine-centered halogen bonding and other non-covalent interactions in some experimentally reported crystal geometries. Phys Chem Chem Phys 20:15316–15329CrossRefGoogle Scholar
  66. 66.
    Panneer SVK, Ravva MK, Mishra BK, Subramanian V, Sathyamurthy N (2018) Co-operativity in non-covalent interactions in ternary complexes: a comprehensive electronic structure theory based investigation. J Mol Model 24:258CrossRefGoogle Scholar
  67. 67.
    Hayashi S, Tsubomoto Y, Nakanishi W (2018) Behavior of the E–E’Bonds (E, E’ = S and Se) in glutathione disulfide and derivatives elucidated by quantum chemical calculations with the quantum theory of atoms-in-molecules approach. Molecules 23:443CrossRefGoogle Scholar
  68. 68.
    Shahi A, Arunan E (2014) Hydrogen bonding, halogen bonding and lithium bonding: an atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter-and intra-molecular bonding. Phys Chem Chem Phys 16:22935–22952CrossRefGoogle Scholar
  69. 69.
    Shainyan B, Chipanina N, Aksamentova T, Oznobikhina L, Rosentsveig G, Rosentsveig I (2010) Intramolecular hydrogen bonds in the sulfonamide derivatives of oxamide, dithiooxamide, and biuret. FT-IR and DFT study, AIM and NBO analysis. Tetrahedron 66:8551–8556CrossRefGoogle Scholar
  70. 70.
    Wu Q, Su H, Wang H, Wang H (2018) Ab initio calculations, structure, NBO and NCI analyses of XH⋯ π interactions. Chem Phys Lett 693:202–209CrossRefGoogle Scholar
  71. 71.
    Esrafili MD, Sadr-Mousavi A (2017) Chalcogen bonds tuned by an N–H··· π or C–H··· π interaction: investigation of substituent, cooperativity and solvent effects. Mol Phys 115:1713–1723CrossRefGoogle Scholar
  72. 72.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  73. 73.
    Chakraborty D, Chattaraj PK (2018) Confinement induced thermodynamic and kinetic facilitation of some Diels–Alder reactions inside a CB [7] cavitand. J Comput Chem 39:151–160CrossRefGoogle Scholar
  74. 74.
    Lefebvre C, Rubez G, Khartabil H, Boisson J-C, Contreras-García J, Hénon E (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys 19:17928–17936CrossRefGoogle Scholar
  75. 75.
    Bühl M, van Wüllen C (1995) Computational evidence for a new C84 isomer. Chem Phys Lett 247:63–68CrossRefGoogle Scholar
  76. 76.
    Peng H, Huang P, Yi P, Xu F, Sun L (2018) Theoretical studies of π-electron delocalization and localization on intramolecular proton transfer in the ground state. J Mol Struct 1154:590–595CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sadeghali Bavafa
    • 1
  • Alireza Nowroozi
    • 1
    Email author
  • Ali Ebrahimi
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Sistan and Baluchestan (USB)ZahedanIran

Personalised recommendations