On the performance of molecular tailoring approach for estimation of the intramolecular hydrogen bond energies of RAHB systems: a comparative study

  • Abasali Keykhaei
  • Alireza NowrooziEmail author
Original Research


In the current research, the performance of molecular tailoring approach (MTA) for estimation of the intramolecular hydrogen bond (IMHB) energies of the simple resonance-assisted hydrogen bond (RAHB) systems was theoretically investigated. First, a wide range of malonaldehyde derivatives (36 members) including the F, Cl, Br, CN, NO2, ethen (-CH=CH2), ethin (-C ≡ CH), CF3, OCH3, C2H5, CH3, and Ph substitutions at R1, R2, and R3 positions were considered. Then, all of these molecules at MP2/6-311++G(d, p) level of theory have been optimized and their MTA energies were calculated. Furthermore, various qualitative descriptors of IMHB such as structural, spectroscopic, topological, and molecular orbital parameters were considered, and all of correlations between these factors and MTA energies were explored. According to their regression coefficients (R2), the linear characteristic of correlations obeys the following order:
$$ {H}_{\mathrm{H}\dots \mathrm{O}}>{d}_{\mathrm{O}-\mathrm{H}}>{E}_{\mathrm{CT}}>{V}_{\mathrm{H}\bullet \bullet \bullet \mathrm{O}}>{\rho}_{\mathrm{H}\bullet \bullet \bullet \mathrm{O}}>{\nu}_{\mathrm{O}-\mathrm{H}}>{d}_{\mathrm{H}\bullet \bullet \bullet \mathrm{O}}>{d}_{\mathrm{O}\bullet \bullet \bullet \mathrm{O}} $$
$$ 0.952\kern1.5em 0.940\kern1.2em 0.936\kern0.75em 0.914\kern1.2em 0.901\kern1.2em 0.834\kern1em 0.789\kern1.3em 0.755 $$
These correlation coefficients have compared with the corresponding R2 values of other models such as RRM, RBM, GCM, IRM, and OCM, which leads to the following order of linearity:
$$ \mathrm{MTA}\ge \mathrm{RRM}>\mathrm{RBM}>\mathrm{GCM}>\mathrm{IRM}>\mathrm{OCM}. $$

Finally, the significance of π-electron delocalization (π-ED) of RAHB rings is also evaluated by the geometrical factor of Gilli (λ) and the harmonic oscillator model of aromaticity (HOMA) that presents the excellent linear correlations with MTA energies, which may be implied on the validity of RAHB theory.


Molecular tailoring approach (MTA) Intramolecular hydrogen bond (IMHB) RAHB AIM NBO 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11224_2019_1415_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 31 kb)


  1. 1.
    Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Kolman PA, Leland CA (1972). Chem Rev 72:283CrossRefGoogle Scholar
  4. 4.
    Grabowski SJ (2004). J Phys Org Chem 17:18CrossRefGoogle Scholar
  5. 5.
    Sobcyzk L, Grabowski SJ, Krygowski TM (2005). Chem Rev 105:3513CrossRefGoogle Scholar
  6. 6.
    Rini JM (1995). Annu Rev Biophys Biomol Struct 24:551CrossRefGoogle Scholar
  7. 7.
    Lis H, Shanon N (1998). Chem Rev 98:637CrossRefGoogle Scholar
  8. 8.
    Davis AP, Wareham RS (1999). Angew Chem Int Ed 38:2978CrossRefGoogle Scholar
  9. 9.
    Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New YorkCrossRefGoogle Scholar
  10. 10.
    Woodford JN (2007). J Phys Chem A 111:8519CrossRefGoogle Scholar
  11. 11.
    Kuldova K, Corval A, Trommsdorff HP, Lehn JM (1997). J Phys Chem A 101:6850CrossRefGoogle Scholar
  12. 12.
    Douhal A, Sastre R (1994). Chem Phys Lett 219:91CrossRefGoogle Scholar
  13. 13.
    Sytnik A, Del Valle JC (1995). J Phys Chem 99:13028CrossRefGoogle Scholar
  14. 14.
    Pimental GC, McClellan AL (1960) The hydrogen bond. Freeman, San FranciscoGoogle Scholar
  15. 15.
    Schuster P, Zundel G (1976) The hydrogen bond, recent development in theory and experiment. North-Holland, AmsterdamGoogle Scholar
  16. 16.
    Nowroozi A, Raissi H, Farzad F (2005). J Mol Struct (THEOCHEM) 730:161CrossRefGoogle Scholar
  17. 17.
    Buemi G, Zuccarello F (2004) DFT study of the intramolecular hydrogen bonds in the amino and nitro-derivatives of malonaldehyde. Chem Phys 306:115CrossRefGoogle Scholar
  18. 18.
    Rozas I, Alkorta I, Elguero J (2001) Intramolecular hydrogen bonds in orthosubstituted hydroxybenzenes and in 8-susbtituted 1-hydroxynaphthalenes: can a methyl group be an acceptor of hydrogen bonds. J Phys Chem A 105:10462CrossRefGoogle Scholar
  19. 19.
    Jablonski M, Kaczmarek A, Sadlej AJ (2006) Estimates of the energy of intramolecular hydrogen bonds. J Phys Chem A 110:10890CrossRefGoogle Scholar
  20. 20.
    Nowroozi A, Hajiabadi H, Akbari F (2014) OH…O and OH…S intramolecular interactions in simple resonance-assisted hydrogen bond systems: a comparative study of various models. Struct Chem 25:251CrossRefGoogle Scholar
  21. 21.
    Gadre SR, Ganesh V (2006) Molecular tailoring approach, towards PC-based ab initio treatment of large molecules. J Theor Comput Chem 5:835CrossRefGoogle Scholar
  22. 22.
    Gadre SR (2010) Molecular tailoring approach for exploring structure, energetics and properties of clusters. J Chem Sci 122:47CrossRefGoogle Scholar
  23. 23.
    Gadre SR (2014) Molecular tailoring approach: a route for ab initio treatment of large clusters. J Chem Res 47:2739CrossRefGoogle Scholar
  24. 24.
    Gadre SR (2016) Toward an accurate and inexpensive estimation of CCSD(T)/CBS binding energies of large water clusters. J Phys Chem A 120(28):5706CrossRefGoogle Scholar
  25. 25.
    Gadre SR (2010) Ab initio investigation of benzene clusters. J Chem Phys 133:164308CrossRefGoogle Scholar
  26. 26.
    Gadre SR (2008) Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach. J Phys Chem A 112:312CrossRefGoogle Scholar
  27. 27.
    Gadre SR (2008) Structure, energetics, and reactivity of boric acid nanotubes: a molecular tailoring approach. J Phys Chem A 112:7699CrossRefGoogle Scholar
  28. 28.
    Gadre SR (2009) A web-interface for ab initio geometry optimization of large molecules. Acta Crystallogr B 65:107CrossRefGoogle Scholar
  29. 29.
    Gadr SR (2007) Intramolecular hydrogen bond energy in polyhydroxy systemes: a critical comparision of MTA and isodesmic approaches. J Phys Chem A 111:6472CrossRefGoogle Scholar
  30. 30.
    Gadre SR (2014) Estimation of the intramolecular OH…O=C hydrogen bond energy via the molecular tailoring approach. Part I aliphatic structures. J Chem Inf Model 54:1963CrossRefGoogle Scholar
  31. 31.
    Deshmukh MM, Suresh CH, Gadre SR (2007) Intramolcular hydrogen bond energy in polyhydroxy systemes a critical comparison of MTA and isodesmic approaches. J Phys Chem A 111:6472CrossRefGoogle Scholar
  32. 32.
    Deshmukh MM, Gadre SR, Bartolotti LJ (2006) Estimation of intramolecular hydrogen bond energy via molecular tailoring approach. J Phys Chem A 110:12519CrossRefGoogle Scholar
  33. 33.
    Gadre SR, Shirsat RN, Limaye AC (1994). J Phys Chem 98:9165CrossRefGoogle Scholar
  34. 34.
    Ganesh V, Dongare RK, Balanarayan P, Gadre SR (2006). J Chem Phys 125:104CrossRefGoogle Scholar
  35. 35.
    Babu K, Gadre SR (2003). J Comput Chem 24:484CrossRefGoogle Scholar
  36. 36.
    Rusinka D (2015). J Phys Chem A 119:3674CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW,Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., WallingfordGoogle Scholar
  38. 38.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, –OxfordGoogle Scholar
  39. 39.
    Reed AE, Curtis LA, Weinhold FA (1998). Chem Rev 88:899CrossRefGoogle Scholar
  40. 40.
    Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlation on the enol form of the bdiketone fragment. J Am Chem Soc 111:1023CrossRefGoogle Scholar
  41. 41.
    Krygowski TM, Cyranski MK (1996) Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron 52:1713CrossRefGoogle Scholar
  42. 42.
    Dziembowska T (1990) Intramolecular hydrogen bonding. Akademia Rolnicza, SzczecinGoogle Scholar
  43. 43.
    Raissi H, Farzad F, Nowroozi A (2005). J Mol Struct 752:130CrossRefGoogle Scholar
  44. 44.
    Raissi H, Nowroozi A, Farzad F (2006). Spectrochim Acta 63A:729CrossRefGoogle Scholar
  45. 45.
    Raissi H, Nowroozi A, Hakimi M (2006). Spectrochim Acta 65A:605CrossRefGoogle Scholar
  46. 46.
    Krygowski TM, Stepion BT (2005) Sigma- and π -electron delocalization: focus on substituent effects. Chem Rev 105:3482CrossRefGoogle Scholar
  47. 47.
    Krygowski TM, Cyranski MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385CrossRefGoogle Scholar
  48. 48.
    Poater J, Duran M, Sola M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations