Theoretical prediction of structures and inclusion properties of heteroatom-bridged pillar[n]arenes

  • Ju XieEmail author
  • Chao Shen
  • Huizhong Shi
  • Shasha Luo
  • Maoxia He
  • Ming ChenEmail author
Original Research


In this paper, the heteroatom-bridged pillar[n]arene derivatives, namely bora-, aza-, and oxa-pillar[n]arenes (PnX, X = B, N, and O respectively, n = 4 − 6) are studied by quantum chemical calculations at the ωB97XD/6-311G(d,p) level of theory. The geometries, energetics, electronic structures, absorption spectra, solvent effects, and the inclusion complexation with paraquat dication are discussed in detail. The calculated results show the structures of pentamers (P5X) are more stable compared with tetramers (P4X) and hexamers (P6X) and the PnB have relatively loose and irregular geometry structures. The molecular cavities of PnX are electron-rich and capable of accommodating cationic guests. Absorption spectra of PnN and PnO are very similar to those of Pn with one intense peak (λmax) at around 260 nm, while PnB indicates another characteristic peak between 300 and 400 nm. P5X can form inclusion complexes of 1:1 stoichiometry with paraquat dication, and P5N exhibits strongest combination ability with paraquat dication among them. These thorough understanding of the structure and properties of heteropillar[n]arenes will broaden the designs, syntheses, and applications of pillararenes.


Heteroatom-bridged pillar[n]arene Structure and property Density functional theory calculation 


Funding information

This work was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP, PPZY2015B112); 111 Project, B12015; Postgraduate Research & Practice Innovation Program of Jiangsu Province (XKYCX18_052), and Science and Technology Innovation Foundation of Chenxi Project for Students of Yangzhou University (CX2018086).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11224_2019_1409_MOESM1_ESM.doc (2.5 mb)
ESM 1 (DOC 2574 kb)


  1. 1.
    Ogoshi T, Fujinami S, Yamagshi TA, Nakamoto Y (2008). J Am Chem Soc 130:5022CrossRefGoogle Scholar
  2. 2.
    Ogoshi T, Yamagshi TA, Nakamoto Y (2016). Chem Rev 116:7937CrossRefGoogle Scholar
  3. 3.
    Xue M, Yang Y, Chi X, Zhang Z, Huang F (2012). Acc Chem Res 45:1294CrossRefGoogle Scholar
  4. 4.
    Cragg PJ, Sharma K (2012). Chem Soc Rev 41:597CrossRefGoogle Scholar
  5. 5.
    Dong S, Zheng B, Wang F, Huang F (2014). Acc Chem Res 47:1982CrossRefGoogle Scholar
  6. 6.
    Yu GC, Jie KC, Huang FH (2015). Chem Rev 115:7240CrossRefGoogle Scholar
  7. 7.
    Shu XY, Xu KD, Hou DB, Li CJ (2018). Isr J Chem 58:1230CrossRefGoogle Scholar
  8. 8.
    Park C, Kim KT (2015). Chin J Chem 33:311CrossRefGoogle Scholar
  9. 9.
    Peerannawar SR, Gejji S (2013). Spectrochim Acta A Mol Biomol Spectrosc 104:368CrossRefGoogle Scholar
  10. 10.
    Strutt NL, Zhang HC, Schneebeli ST, Stoddart JF (2014). Acc Chem Res 47:2631CrossRefGoogle Scholar
  11. 11.
    Zhou J, Chen M, Diao GW (2014). Chem Commun 50:11954CrossRefGoogle Scholar
  12. 12.
    Zhou J, Chen M, Diao GW (2014). ACS Appl Mater Interfaces 6:18538CrossRefGoogle Scholar
  13. 13.
    Ogoshi T, Yamagishi T (2013). Eur J Org Chem 15:2961CrossRefGoogle Scholar
  14. 14.
    Strutt NL, Zhang H, Schneebeli ST, Stoddart JF (2014). Chem Eur J 20:10996CrossRefGoogle Scholar
  15. 15.
    Han J, Hou X, Ke C, Zhang H, Strutt NL, SternC L, Stoddart JF (2015). Org Lett 17:3260CrossRefGoogle Scholar
  16. 16.
    Boinski T, Cieszkowski A, Rosa B, Szumna A (2015). J Organomet Chem 80:3488CrossRefGoogle Scholar
  17. 17.
    Xie J, Zuo T, Huang Z, Huan L, Gu Q, Gao C, Shao JJ (2016). Chem Phys Lett 662:25CrossRefGoogle Scholar
  18. 18.
    Kumagai H, Hasegawa M, Miyanan S, Sugawa Y, Sato Y, Hori T, Ueda T, Kamiyama H, Miyano S (1997). Tereahedron Lett 38:3971CrossRefGoogle Scholar
  19. 19.
    König B, Fonseca MH (2000). Eur J Inorg Chem 11:2303–2310CrossRefGoogle Scholar
  20. 20.
    Katz JL, Feldman MB, Conry RR (2005). Org Lett 7:91CrossRefGoogle Scholar
  21. 21.
    Wang MX (2008) Chem Commun 4541Google Scholar
  22. 22.
    Wang MX (2012). Acc Chem Res 45:182CrossRefGoogle Scholar
  23. 23.
    Thomas J, Rossom WV, Hecke KV, Meervelt LV, Smet M, Maes W, Dehaen W (2012). Chem Commun 48:43CrossRefGoogle Scholar
  24. 24.
    Thomas J, Dobrzańska L, Van Hecke K, Sonawane MP, Robeyns K, Van LM, Woźniak K, Smet M, Meas W, Dehaen W (2012). Org Biomol Chem 10:6526Google Scholar
  25. 25.
    Peterson A, Kaabel S, Kahn I, Pehk T, Aav R, Adamson J (2018). Chem Select 3:9091Google Scholar
  26. 26.
    Zuo C, Wiest O, Wu Y (2011). J Phys Org Chem 24:1157CrossRefGoogle Scholar
  27. 27.
    Chai JD, Head-Gordon M (2008). J Chem Phys 128:084106CrossRefGoogle Scholar
  28. 28.
    Chai JD, Head-Gordon M (2008). Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  29. 29.
    Glendening ED, Reed A E, Carpenter JE, Weinhold F. NBO 3.1 Program as Implemented in Gaussian 09 PackageGoogle Scholar
  30. 30.
    Burke K, Werschnik J, Gross EKU (2005). J Chem Phys 123:062206CrossRefGoogle Scholar
  31. 31.
    Jacquemin D, Perpète EA, Ciofini L, Adamo C (2009). Acc Chem Res 42:326CrossRefGoogle Scholar
  32. 32.
    Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008). J Chem Theory Comput 4:123CrossRefGoogle Scholar
  33. 33.
    Goresky SI, Lever ABP (2001). J Organomet Chem 635:187Google Scholar
  34. 34.
    Nazeeruddin MK, Wang Q, Cevey L, Aranyos V, Liska P, Figgemeier E, Klein C, Hirata N, Koops S, Haque SA, Durrant JR, Hagfeldt A, lever ABP, Grätzel M (2006). Inorg Chem 45:787CrossRefGoogle Scholar
  35. 35.
    Marenich AV, Cramer CJ, Truhlar DG (2009). J Phys Chem B 113:6378CrossRefGoogle Scholar
  36. 36.
    Ho J, Klamt A, Coote ML (2010). J Phys Chem A 114:13442CrossRefGoogle Scholar
  37. 37.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WT (2010). J Am Chem Soc 132:6498CrossRefGoogle Scholar
  38. 38.
    Lu T, Chen F (2012). J Comput Chem 33:580CrossRefGoogle Scholar
  39. 39.
    Lu T, Chen F (2012). J Mol Graph Model 38:314CrossRefGoogle Scholar
  40. 40.
    Gaussian 09, Revision B.01, Frisch, MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa, J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox J E, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., WallingfordGoogle Scholar
  41. 41.
    Bhattacharyya PK (2015). Comput Theor Chem 1066:20CrossRefGoogle Scholar
  42. 42.
    Sharma H, Deka BC, Saha B, Bhattacharyya PK (2018). Comput Theor Chem 1139:82CrossRefGoogle Scholar
  43. 43.
    Lao KU, Yu CH (2011). J Comput Chem 32:2716CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjinChina
  3. 3.Environment Research InstituteShandong UniversityQingdaoChina

Personalised recommendations