Advertisement

A computational study of gas-phase acidity and basicity of azulene-based uracil analogue

  • Safinaz H. El-DemerdashEmail author
  • Shaimaa F. Gad
Original Research
  • 24 Downloads

Abstract

In this paper, we suggest a computational scheme for the theoretical estimation of gas-phase acidity and basicity of azulene-based uracil analogue. The proton affinities (PAs) of the two oxygen and of the two nitrogen atoms and the deprotonation energies (DPEs) of the two NH and of the two OH bonds of azulene-based uracil analogue isomers are calculated by density functional theory (DFT) using the 6-31+G(d,p) basis set and by high ab initio MO theory (CBS-QB3) method. The PAs of the oxygen and nitrogen atoms of 13 tautomers range from 197.9 to 230.4 kcal/mol and the DPEs of the OH and NH groups from 300 to 342.3 kcal/mol. The proton affinities of di-keto form AZU1 followed the order O9 (N1 site), O9 (N3 site), O11 (N3 site), and O11 (H13 site).

Keywords

Tautomerism Uracil analogue Azulene CBS-QB3 Proton affinity Deprotonation enthalpy 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11224_2019_1408_MOESM1_ESM.docx (647 kb)
ESM 1 Supplementary data associated with this article can be found in the online version (DOCX 646 kb)

References

  1. 1.
    Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464.  https://doi.org/10.1038/nrd4010 CrossRefGoogle Scholar
  2. 2.
    Esposito V, Randazzo A, Piccialli G et al (2004) Effects of an 8-bromodeoxyguanosine incorporation on the parallel quadruplex structure [d(TGGGT)]4. Org Biomol Chem 2:313–318.  https://doi.org/10.1039/b314672c CrossRefGoogle Scholar
  3. 3.
    Denifl S, Matejcik S, Gstir B et al (2003) Electron attachment to 5-chloro uracil. J Chem Phys 118:4107–4114.  https://doi.org/10.1063/1.1540108 CrossRefGoogle Scholar
  4. 4.
    Brovarets’ OO, Zhurakivsky RO, Hovorun DM (2014) Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. J Comput Chem 35:451–466.  https://doi.org/10.1002/jcc.23515 CrossRefGoogle Scholar
  5. 5.
    Brovarets OO, Hovorun DM (2015) The nature of the transition mismatches with Watson-Crick architecture: the G∗•T or G•T∗ DNA base mispair or both? A QM/QTAIM perspective for the biological problem. J Biomol Struct Dyn 33:925–945.  https://doi.org/10.1080/07391102.2014.924879 CrossRefGoogle Scholar
  6. 6.
    Mahmoud S, Hasabelnaby S, Hammad SF, Sakr TM (2018). Antiviral nucleoside and nucleotide analogs: a review 547:73–88Google Scholar
  7. 7.
    González-Sarrías A, Tomé-Carneiro J, Bellesia A et al (2015) The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food Funct 6:1460–1469.  https://doi.org/10.1039/c5fo00120j CrossRefGoogle Scholar
  8. 8.
    Smith NF, Figg WD, Sparreboom A (2004) Recent advances in pharmacogenetic approaches to anticancer drug development. Drug Dev Res 62:233–253.  https://doi.org/10.1002/ddr.10361 CrossRefGoogle Scholar
  9. 9.
    Blicharska B, Kupka T (2002) Theoretical DFT and experimental NMR studies on uracil and 5-fluorouracil. J Mol Struct 613:153–166. 10.1016/S0022-2860(02)00171-0Google Scholar
  10. 10.
    Rashad AE, Shamroukh AH, Abdel-Megeid RE, El-Sayed WA (2010) Synthesis, reactions, and antimicrobial evaluation of some polycondensed thienopyrimidine derivatives. Synth Commun 40:1149–1160.  https://doi.org/10.1080/00397910903050954 CrossRefGoogle Scholar
  11. 11.
    Rashad A, Ali M (2006) Synthesis and antiviral screening of some thieno[2,3- d]pyrimidine nucleosides. Nucleosides Nucleotides Nucleic Acids 25:17–28.  https://doi.org/10.1080/15257770500377730 CrossRefGoogle Scholar
  12. 12.
    Simonson T, Brooks CL (1996) Charge screening and the dielectric constant of proteins: insights from molecular dynamics. J Am Chem Soc 118:8452–8458.  https://doi.org/10.1021/ja960884f CrossRefGoogle Scholar
  13. 13.
    Jordan F, Li H, Brown A (1999) Remarkable stabilization of zwitterionic intermediates may account for a billion-fold rate acceleration by thiamin diphosphate-dependent decarboxylases. Biochemistry 38:6369–6373.  https://doi.org/10.1021/bi990373g CrossRefGoogle Scholar
  14. 14.
    Tho Nguyen M, Chandra AK, Zeegers-Huyskens T (1998) Protonation and deprotonation energies of uracil implications for the uracil–water complex. J Chem Soc Faraday Trans 94:1277–1280.  https://doi.org/10.1039/a708804c CrossRefGoogle Scholar
  15. 15.
    Chandra AK, Nguyen MT, Uchimaru T, Zeegers-Huyskens T (1999) Protonation and deprotonation enthalpies of guanine and adenine and implications for the structure and energy of their complexes with water: comparison with uracil, and cytosine. J Phys Chem A 103:8853–8860.  https://doi.org/10.1021/jp990647+ CrossRefGoogle Scholar
  16. 16.
    Wolken JK, Tureček F (2000) Proton affinity of uracil. A computational study of protonation sites. J Am Soc Mass Spectrom 11:1065–1071. 10.1016/S1044-0305(00)00176-8Google Scholar
  17. 17.
    Nguyen VQ, Tureček F (1997) Protonation sites in pyrimidine and pyrimidinamines in the gas phase. J Am Chem Soc 119:2280–2290.  https://doi.org/10.1021/ja9634785 CrossRefGoogle Scholar
  18. 18.
    Podolyan Y, Gorb L, Leszczynski J (2000) Protonation of nucleic acid bases. A comprehensive post-Hartree−Fock study of the energetics and proton affinities . J Phys Chem A, 104 : 7346–7352. 10.1021/jp000740uGoogle Scholar
  19. 19.
    Nguyen VQ, Tureček F (1997) Gas-phase protonation of pyridine. A variable-time neutralization-reionization and ab initio study of pyridinium radicals. J Mass Spectrom 32:55–63.  https://doi.org/10.1002/(SICI)1096-9888(199701)32:1<55::AID-JMS447>3.0.CO;2-M CrossRefGoogle Scholar
  20. 20.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539.  https://doi.org/10.1021/ja00905a001 CrossRefGoogle Scholar
  21. 21.
    Mineva T, Russo N (2010) Atomic Fukui indices and orbital hardnesses of adenine, thymine, uracil, guanine and cytosine from density functional computations. J Mole Struct: THEOCHEM 943:71–76.  https://doi.org/10.1016/j.theochem.2009.10.023 CrossRefGoogle Scholar
  22. 22.
    Taura LS, Ndikilar CE, Muhammad A (2017) Modeling the structures and electronic properties of uracil and thymine in gas phase and water. Mod App Sci 11:36–46.  https://doi.org/10.5539/mas.v11n12p36 CrossRefGoogle Scholar
  23. 23.
    Abdel-Mottaleb Y, Abdel-Mottaleb MSA (2016, 2016) Molecular modeling studies of some uracil and new deoxyuridine derivatives. J Chem.  https://doi.org/10.1155/2016/5134732
  24. 24.
    Estrin DA, Paglieri L, Corongiu G (1994) A density functional study of tautomerism of uracil and cytosine. J Phys Chem 98:5653–5660.  https://doi.org/10.1021/j100073a014 CrossRefGoogle Scholar
  25. 25.
    Millefiori S, Alparone A (2004) Tautomerism and polarizability in uracil: coupled cluster and density-functional theory study. Chem Phys 303:27–36.  https://doi.org/10.1016/j.chemphys.2004.05.002 CrossRefGoogle Scholar
  26. 26.
    Pałasz A, Ciez D (2015) In search of uracil derivatives as bioactive agents. Uracils and fused uracils: synthesis, biological activity and applications. Eur J Med Chem 97:582–611.  https://doi.org/10.1016/j.ejmech.2014.10.008 CrossRefGoogle Scholar
  27. 27.
    Jalbout AF, Trzaskowski B, Xia Y et al (2007) Structures, stabilities and tautomerizations of uracil and diphosphouracil tautomers. Chem Phys 332:152–161.  https://doi.org/10.1016/j.chemphys.2006.10.026 CrossRefGoogle Scholar
  28. 28.
    Kurinovich MA, Lee JK (2002) The acidity of uracil and uracil analogs in the gas phase: four surprisingly acidic sites and biological implications. J Am Soc Mass Spectrom 13:985–995.  https://doi.org/10.1016/S1044-0305(02)00410-5 CrossRefGoogle Scholar
  29. 29.
    Hu X, Li H, Liang W, Han SJ (2005). Phys Chem B 109:5935Google Scholar
  30. 30.
    Bakker JM, Sinha RK, Besson T et al (2008) Tautomerism of uracil probed via infrared spectroscopy of singly hydrated protonated uracil. J Phys Chem A 112:12393–12400.  https://doi.org/10.1021/jp806396t CrossRefGoogle Scholar
  31. 31.
    Valadbeigi Y, Farrokhpour H (2014) Effect of hydration on the stability and tautomerisms of different isomers of uracil. RSC Adv 4:61643–61651.  https://doi.org/10.1039/c4ra09733e CrossRefGoogle Scholar
  32. 32.
    Kryachko ES, Nguyen MT, Zeegers-Huyskens T (2001) Theoretical study of tautomeric forms of uracil. 1. Relative order of stabilities and their relation to proton affinities and deprotonation enthalpies. J Phys Chem A 105:1288–1295.  https://doi.org/10.1021/jp001031j CrossRefGoogle Scholar
  33. 33.
    Raczyńska ED, Zientara K, Stepniewski TM, Kolczynska K (2009) Stability, polarity, intramolecular interactions and Π-electron delocalization for all eighteen tautomers rotamers of uracil. dft studies in the gas phase. Collect Czechoslov Chem Commun 74:57–72.  https://doi.org/10.1135/cccc2008149 CrossRefGoogle Scholar
  34. 34.
    Chandra AK, Nguyen MT, Zeegers-Huyskens T (1998) Theoretical study of the interaction between thymine and water. Protonation and deprotonation enthalpies and comparison with uracil. J Phys Chem A 102:6010–6016.  https://doi.org/10.1021/jp981259v CrossRefGoogle Scholar
  35. 35.
    Miller TM, Arnold ST, Viggiano AA, Stevens Miller AE (2004) Acidity of a nucleotide base: uracil. J Phys Chem A 108:3439–3446.  https://doi.org/10.1021/jp037367l CrossRefGoogle Scholar
  36. 36.
    Mikheev YA, Guseva LN, Ershov YA (2012) The structure of dimers and the nature of azulene chromaticity. Russ J Phys Chem A 86:85–92.  https://doi.org/10.1134/S0036024412010232 CrossRefGoogle Scholar
  37. 37.
    Murakami A, Kobayashi T, Goldberg A, Nakamura S (2004) CASSCF and CASPT2 studies on the structures, transition energies, and dipole moments of ground and excited states for azulene. J Chem Phys 120:1245–1252.  https://doi.org/10.1063/1.1631914 CrossRefGoogle Scholar
  38. 38.
    Rekka E, Chrysselis M, Siskou I, Kourounakis A (2002) Synthesis of new azulene derivatives and study of their effect on lipid peroxidation and lipoxygenase activity. Chem Pharm Bull (Tokyo) 50:904–907.  https://doi.org/10.1248/cpb.50.904 CrossRefGoogle Scholar
  39. 39.
    Wang B-C, Lin Y-S, Chang J-C, Wang P-Y (2000) Theoretical studies of azulene and its derivatives. ProQuest Cent 78:224–232.  https://doi.org/10.1002/chin.200024030 Google Scholar
  40. 40.
    Ramadan M, Goeters S, Watzer B et al (2006) Chamazulene carboxylic acid and matricin: a natural profen and its natural prodrug, identified through similarity to synthetic drug substances. J Nat Prod 69:1041–1045.  https://doi.org/10.1021/np0601556 CrossRefGoogle Scholar
  41. 41.
    Frigola J, Torrens A, Castrillo JA, Mas J, Vano D, Berrocal JM et al (1994) 7-Azetidinylquinolones as antibacterial agents. 2. Synthesis and biological activity of 7-(2,3-disubstituted-1-azetidinyl)-4-oxoquinoline- and -1,8-naphthyridine-3-carboxylic acids. Properties and structure-activity relationships of quinolones with an azetidine moiety. J Med Chem 37(24):4195–4210.  https://doi.org/10.1021/jm00050a016 CrossRefGoogle Scholar
  42. 42.
    Ishihara M, Wakabayashi H, Motohashi N, Sakagami H (2011) Quantitative structure-cytotoxicity relationship of newly synthesised trihaloacetylazulenes determined by a semi-empirical molecular-orbital method (PM5). Anticancer Res 31:515–520Google Scholar
  43. 43.
    Rejnek J, Hanus M, Kabela M, Ryja F, Hobza ek and P (2005) Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Part 4. Uracil and thymine. PhysChemChemPhys 7:2006–22017Google Scholar
  44. 44.
    Tian SX, Zhang CF, Zhang ZJ, et al (1999) How many uracil tautomers there are? Density functional studies of stability ordering of tautomers. Chem Phys 242:217–225. 10.1016/S0301-0104(99)00009-9Google Scholar
  45. 45.
    Kurinovich MA, Lee JK (2000) The acidity of uracil from the gas phase to solution: the coalescence of the N1 and N3 sites and implications for biological glycosylation. J Am Chem Soc 122:6258–6262.  https://doi.org/10.1021/ja000549y CrossRefGoogle Scholar
  46. 46.
    Gad SF, El-Demerdash SH, El-Mehasseb IM, El-Nahas AM (2019) Structure, stability and conversions of tautomers and rotamers of azulene-based uracil analogue. J MoleStruct.  https://doi.org/10.1016/j.molstruc.2019.01.020
  47. 47.
    Florián J, Leszczyński J (1996) Spontaneous DNA mutations induced by proton transfer in the guanine·cytosine base pairs: an energetic perspective. JAmeChem Soci 118:3010–3017.  https://doi.org/10.1021/ja951983g Google Scholar
  48. 48.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627.  https://doi.org/10.1021/j100096a001 CrossRefGoogle Scholar
  49. 49.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  50. 50.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  51. 51.
    Pokon EK, Liptak MD, Feldgus S, Shields GC (2001) Comparison of CBS-QB3, CBS-APNO, and G3 predictions of gas phase deprotonation data. J Phys Chem A 105:10483–10487.  https://doi.org/10.1021/jp012920p CrossRefGoogle Scholar
  52. 52.
    Nicolaides A, Rauk A, Glukhovtsev MN, Radom L (1996) Heats of formation from G2, G2 (MP2), and G2 (MP2, SVP) total energies. J Phys Chem 100:17460–17464CrossRefGoogle Scholar
  53. 53.
    Glossman MD (1995) Application of density functional theory concepts to the study of the chemical reactivity of thiadiazoles. J Mol Struct THEOCHEM 330:385–388.  https://doi.org/10.1016/0166-1280(94)03865-i CrossRefGoogle Scholar
  54. 54.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L Sonnenberg, M. Hada and DJF (2009) Gaussian 09 (Gaussian, Inc., Wallingford CTGoogle Scholar
  55. 55.
    Wilson MS, McCloskey JA (1975) Chemical ionization mass spectrometry of nucleosides. Mechanisms of ion formation and estimations of proton affinity. J Am Chem Soc 97:3436–3444.  https://doi.org/10.1021/ja00845a026 CrossRefGoogle Scholar
  56. 56.
    Hunter EPL, Lias SG (2013) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 413:.  https://doi.org/10.1063/1.556018
  57. 57.
    Löwdin P-O (1963) Proton tunneling in DNA and its biological implications. Rev Mod Phys 35:724–732.  https://doi.org/10.1103/revmodphys.35.724 CrossRefGoogle Scholar
  58. 58.
    Fujio M, Mclver RT, Taft RW (1981) Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas-phase acidities. J Am Chem Soc 103:4017–4029.  https://doi.org/10.1021/ja00404a008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceMenoufia UniversityShebin El-KomEgypt
  2. 2.Chemistry Department, Faculty of ScienceKafr El-sheikh UniversityKafr El-SheikhEgypt

Personalised recommendations