Theoretical prediction of proton and electron affinities, gas phase basicities, and ionization energies of sulfinamides

  • Masoumeh Ghahremani
  • Hamed BahramiEmail author
  • Hamed Douroudgari
  • Morteza Vahedpour
Original Research


Sulfinamides, as an asymmetric synthesizer, especially in drug synthesis, play critical roles in organic chemistry. In this study, the gas phase ion energetics data including the topical proton affinities, topical gas phase basicities, adiabatic and vertical ionization energies (IE), and electron affinities of sulfinamides were calculated at B3LYP/6-311++G(d,p), G4MP2, and MP2/6-311++G(d,p) levels. Determination of the actual protonation sites of sulfinamides is an important challenging issue in the experimental investigations. Three significant centers, including oxygen atom, sulfur atom, and nitrogen atom of the amide functional group of the sulfinamides, can be protonated. Our calculations indicate that in most cases, oxygen center is the most probable protonation site of sulfinamides. Bond polarities and bond lengths of ionic species in comparison with the corresponding neutral molecules are investigated. The effect of these parameters on the calculated topical proton affinity and topical gas phase basicity values is discussed. The energy barriers for internal proton transfer of different sites in protonated sulfinamides were obtained and discussed at MP2/6-311++G(d,p) level of theory. Results show the IEs increase when the electron acceptor substituents are connected to the S—O group, while the electron donor functional groups reduce the IE values. The EAs were shifted to more positive values if the H atom of sulfinamide substitutes with an electron acceptor functional groups.


Sulfinamides Protonation sites Gas phase ion energetics data Theoretical calculations 



The authors are highly grateful to the University of Zanjan for its financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


The authors certify that the manuscript represents valid work; neither this manuscript nor one with substantially similar content under their authorship has been published or is being considered for publication elsewhere and copies of any closely related manuscripts are enclosed in the manuscript submission. Also, they agree to allow the corresponding author to serve as the primary correspondent with the editorial office and to review. All authors agree to submit this manuscript in journal “Structural Chemistry.”

Supplementary material

11224_2019_1401_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)


  1. 1.
    Richards-Taylor CS, Martínez-Lamenca C, Leenaerts JE, Trabanco AA, Oehlrich D (2017) The synthesis of Trifluoromethyl-sulfonimidamides from sulfinamides. J Org Chem 82:9898CrossRefGoogle Scholar
  2. 2.
    Mancheno OG, Bolm C (2007) Synthesis of sulfonimidamides from sulfinamides by oxidation with N-chlorosuccinimide. Beilstein J Org Chem 3:25Google Scholar
  3. 3.
    Sehgelmeble F, Janson J, Ray C, Rosqvist S, Gustavsson S, Nilsson LI, Minidis A, Holenz J, Rotticci D, Lundkvist J, Arvidsson PI (2012) Sulfonimidamides as sulfonamides bioisosteres: rational evaluation through synthetic, in vitro, and in vivo studies with g-secretase inhibitors. Chem Med Chem 7:396CrossRefGoogle Scholar
  4. 4.
    Dinr P, Sadhukhan A, Blomkvist B (2014) Chiral sulfinamides as highly enantioselective organocatalysts. ChemCatChem 6:3063CrossRefGoogle Scholar
  5. 5.
    Chelouan A, Recio R, Borrego LG, Alvarez E, Khiar N, Fernandez I (2016) Sulfinamide phosphinates as chiral catalysts for the enantioselective organocatalytic reduction of imines. Org Lett 18:3258CrossRefGoogle Scholar
  6. 6.
    Wang C, Wu X, Zhou L, Sun J (2015) L-Valine derived chiral N-sulfinamides as effective organocatalysts for the asymmetric hydrosilylation of N-alkyl and N-aryl protected ketimines. Org Biomol Chem 13:577CrossRefGoogle Scholar
  7. 7.
    Belfrage AK, Wakchaure P, Larhed M, Sandström A (2015) Palladium-catalyzed carbonylation of aryl iodides with sulfinamides. Eur J Org Chem 2015:7069CrossRefGoogle Scholar
  8. 8.
    Han Z, Krishnamurthy D, Pflum D, Grover P, Wald SA, Senanayake HC (2002) First application of tunable alkyl or aryl sulfinamides to the stereoselective synthesis of a chiral amine: asymmetric synthesis of (R)-didesmethylsibutramine ((R)-DDMS) using (R)-triethylmethylsulfinamide((R)-TESA). Org Lett 4:44025CrossRefGoogle Scholar
  9. 9.
    Chakravarti R (2014) A very efficient nano-crystalline magnesium oxide mediated catalytic protocol for the synthesis of sulfinamides. J Post Doc Res 2:26Google Scholar
  10. 10.
    Bharatam PV, Kaur AD (2002) Theoretical studies on the S-N interaction in sulfinamides. J Phys Org Chem 15:197CrossRefGoogle Scholar
  11. 11.
    Bagno A, Euetace SJ, Johansson L (1994) Relative basicity of nitrogen, oxygen, and sulfur bases. The site of protonation in sulfenamides and sulfinamides determined by l4N NMR relaxation. J Org Chem 59:232CrossRefGoogle Scholar
  12. 12.
    Bujnicki B, Drabowicz J, Mikołajczyk M (1996) Protonation of sulfinamides. does it occur at oxygen or nitrogen? J Org Chem 61:7593CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Harpe K, Beckstead AA, Improta R, Kohler B (2015) UV-induced proton transfer between DNA strands. J Am Chem Soc 137:7059CrossRefGoogle Scholar
  14. 14.
    Li C, Yang Y, Li D, Liu Y (2017) A theoretical study of the potential energy surfaces for double proton transfer reaction of model DNA base pairs. Phys Chem Chem Phys 19:4802CrossRefGoogle Scholar
  15. 15.
    Crane F (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591CrossRefGoogle Scholar
  16. 16.
    Tüzün B, Kaya C (2018) Investigation of DNA–RNA molecules for the efciency and activity of corrosion inhibition by DFT and molecular docking. J Bio Tribo Corros 4:69CrossRefGoogle Scholar
  17. 17.
    Duanmu K, Roberto-Neto O, Machado FBC, Hansen JA, Shen J, Piecuch P, Truhlar DG (2016) Geometries, binding energies, ionization potentials, and electron and electron affinities of metal clusters: Mgn0,±1, n = 1−7. J Phys Chem C 120:13275CrossRefGoogle Scholar
  18. 18.
    Joblin C, Dontot L, Garcia GA, Spiegelman F, Rapacioli M, Nahon L, Parneix P, Pino T, Brechignac P (2017) Size effect in the ionization energy of PAH clusters. J Phys Chem Lett 8:3697CrossRefGoogle Scholar
  19. 19.
    Changala PB, Nguyen TL, Baraban JH, Ellison GB, Stanton JF, Bross DH, Ruscic B (2017) Active thermochemical tables: the adiabatic ionization energy of hydrogen peroxide. J Phys Chem A 121:8799CrossRefGoogle Scholar
  20. 20.
    Naderi S, Bahrami H, Vahedpour M, Sabzehzari M (2019) Structural investigation, proton and electron affinities, gas phase basicities, and ionization energies of captopril. Phys Chem Res 7:245Google Scholar
  21. 21.
    Yanagisawa S (2017) Theoretical determination of the ionization potential and the electron affinity of organic semiconductors. AIP Conf Proc 1906:030014CrossRefGoogle Scholar
  22. 22.
    Richard RM, Marshall MS, Dolgounitcheva O, Ortiz JV, Bredas JL, Marom N, Sherrill CD (2016) Accurate ionization potentials and electron affinities of acceptor molecules I. reference data at the CCSD(T) complete basis set limit. J Chem Theory Comput 12:595CrossRefGoogle Scholar
  23. 23.
    Dahlstrand C, Yamazaki K, Kilsa K, Ottosson H (2010) Substituent effects on the electron affinities and ionization energies of tria-, penta-, and heptafulvenes: a computational investigation. J Org Chem 75:8060CrossRefGoogle Scholar
  24. 24.
    Lee GY (2010) Substituent effect on electron affinity, gas-phase basicity, and structure of monosubstituted propargyl radicals and their anions: a theoretical study. J Phys Org Chem 23:91Google Scholar
  25. 25.
    Nam PC, Nguyen MT, Chandra AK (2006) Theoretical study of the substituent effects on the S-H bond dissociation energy and ionization energy of 3-pyridinethiol: prediction of novel antioxidant. J Phys Chem A 110:10904CrossRefGoogle Scholar
  26. 26.
    Farajmand B, Bahrami H (2016) Electron ionization of serine and threonine: a discussion about peak intensities. Phys Chem Res 4:539Google Scholar
  27. 27.
    Valadbeigi Y, Farrokhpour H, Tabrizchi M (2014) G4MP2, DFT and CBS-Q calculation of proton and, electron affinities, gas phase basicities and ionization energies of hydroxylamines and alkanolamines. J Chem Sci 126:1209CrossRefGoogle Scholar
  28. 28.
    Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98:5648CrossRefGoogle Scholar
  29. 29.
    Fedorov DG, Kitaura K (2004) Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. J Chem Phys 121:2483CrossRefGoogle Scholar
  30. 30.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127:124105CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  32. 32.
    Fifen JJ, Dhaouadi Z, Nsangou M (2014) Revision of the thermodynamics of the proton in gas phase. J Phys Chem 118:11090CrossRefGoogle Scholar
  33. 33.
    Bahrami H, Tabrizchi M, Farrokhpour H (2013) Protonation of caffeine: a theoretical and experimental study. Chem Phys 415:222CrossRefGoogle Scholar
  34. 34.
    Bahrami H, Farrokhpour H (2015) Corona discharge ionization of paracetamol molecule: peak assignment. Spectrochim Acta A 135:646CrossRefGoogle Scholar
  35. 35.
    Li X, Cai Z, Sevilla MD (2002) DFT calculations of the electron affinities of nucleic acid bases: dealing with negative electron affinities. J Phys Chem A 106:1596CrossRefGoogle Scholar
  36. 36.
    Wetmore SD, Boyd RJ, Eriksson LA (2000) Electron affinities and ionization potentials of nucleotide bases. Chem Phys Lett 322:129CrossRefGoogle Scholar
  37. 37.
    Wesolowski SS, Leininger ML, Pentchev PN, Schaefer HF (2001) Electron affinities of the DNA and RNA bases. J Am Chem Soc 123:4023CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran

Personalised recommendations