Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 2003–2014 | Cite as

Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 5–6) and the discipline

  • Maja Ponikvar-SvetEmail author
  • Diana N. ZeigerEmail author
  • Joel F. LiebmanEmail author
Review Article
  • 24 Downloads

Abstract

The contents of issues 5 and 6 of Structural Chemistry from the calendar year 2018 are summarized in the present review. A brief thermochemical commentary and recommendations for future research have been added to the summary of each paper.

Keywords

Structural chemistry Thermodynamics Physical chemistry Thermochemistry Enthalpy of formation Chemical reactions Phase transitions 

Abbreviations

ASiNRs

Armchair silicene nanoribbons

DPH

Doped polycyclic hydrocarbon

ESPT

Excited-state proton transfer

ΔG

Gibbs energy

GNP

Gold nanoparticle

GNS

Graphene nanosheet

GQD

Graphene quantum dot

hTK1

Human thymidine kinase 1

HB

Hydrogen bond

PI3Kα

Phosphoinositide 3-kinase

PAH

Polycyclic aromatic hydrocarbon

QSAR

Quantitative structure–activity relationship

SWCNT

Single-wall carbon nanotube

Notes

Funding information

MPS was financially supported by the Slovenian Research Agency (ARRS Grant P1-0045, Inorganic Chemistry and Technology).

Compliance with ethical standards

We did not perform any experiments when preparing this review article, so neither ethics review nor informed consent was necessary.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liebman JF (2003). Struct Chem 14:299–313Google Scholar
  2. 2.
    Liebman JF (2003). Struct Chem 14:403–415Google Scholar
  3. 3.
    Stem-Beren MR, Liebman JF (2005). Struct Chem 16:159–168Google Scholar
  4. 4.
    Stem MR, Liebman JF (2005). Struct Chem 16:593–603Google Scholar
  5. 5.
    Stem MR, Liebman JF (2006). Struct Chem 17:367–376Google Scholar
  6. 6.
    Ponikvar-Svet M, Keating LR, Dodson BJ, Liebman JF (2010). Struct Chem 21:527–540Google Scholar
  7. 7.
    Ponikvar-Svet M, Liebman JF (2009). Struct Chem 20:1019–1037Google Scholar
  8. 8.
    Ponikvar M, Liebman JF (2008). Struct Chem 19:849–872Google Scholar
  9. 9.
    Ponikvar-Svet M, Keating LR, Dodson BJ, Liebman JF (2009). Struct Chem 20:719–741Google Scholar
  10. 10.
    Ponikvar-Svet M, Liebman JF (2010). Struct Chem 21:1131–1149Google Scholar
  11. 11.
    Ponikvar-Svet M, Liebman JF (2011). Struct Chem 22:717–740Google Scholar
  12. 12.
    Ponikvar-Svet M, Liebman JF (2011). Struct Chem 22:1179–1192Google Scholar
  13. 13.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2012). Struct Chem 23:1267–1280Google Scholar
  14. 14.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2012). Struct Chem 23:2019–2037Google Scholar
  15. 15.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2013). Struct Chem 24:1759–1779Google Scholar
  16. 16.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2013). Struct Chem 24:2101–2114Google Scholar
  17. 17.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2014). Struct Chem 25:1581–1592Google Scholar
  18. 18.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2014). Struct Chem 25:1881–1894Google Scholar
  19. 19.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2015). Struct Chem 26:623–635Google Scholar
  20. 20.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2015). Struct Chem 26:887–898Google Scholar
  21. 21.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2015). Struct Chem 26:17291739 Google Scholar
  22. 22.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2016). Struct Chem 27:10171026 Google Scholar
  23. 23.
    Ponikvar-Svet M, Liebman JF (2016). Struct Chem 27:1869–1878Google Scholar
  24. 24.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017). Struct Chem 28:879–887Google Scholar
  25. 25.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017). Struct Chem 28:889–899Google Scholar
  26. 26.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017). Struct Chem 28:1265–1273Google Scholar
  27. 27.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017). Struct Chem 28:1981–1988Google Scholar
  28. 28.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2018). Struct Chem 29:947–955Google Scholar
  29. 29.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2018). Struct Chem 29:1235–1245Google Scholar
  30. 30.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2019). Struct Chem 30:1095–1104Google Scholar
  31. 31.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2019). Struct Chem 30:1105–1115Google Scholar
  32. 32.
    Ponikvar-Svet M, Zeiger DN, Liebman JF, Struct Chem, accepted in Structural ChemistryGoogle Scholar
  33. 33.
    Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11(Suppl 2):1–392Google Scholar
  34. 34.
    Pedley JB (1994) Thermochemical data and structures of organic compounds. TRC data series, vol 1. TRC, College StationGoogle Scholar
  35. 35.
    Pavlović D, Ponikvar-Svet M, Liebman JF (2018). Struct Chem 29:1247–1254Google Scholar
  36. 36.
    Ebbinghaus BB (1995). Comb Flame 101:311–338Google Scholar
  37. 37.
    Gholipour A (2018). Struct Chem 29:1255–1263Google Scholar
  38. 38.
    Hernández-García L, Sandoval-Lira J, Rosete-Luna S, Niño-Medina G, Sanchez M (2018). Struct Chem 29:1265–1272Google Scholar
  39. 39.
    An N, Shi X, Zhou C, Li J (2007). Huaxue Gongcheng 35:43–44Google Scholar
  40. 40.
    Dávalos JZ, Herrero R, Chana A, Guerrero A, Jiménez P, Santiuste JM (2012). J Phys Chem A 116:2261–2267Google Scholar
  41. 41.
    Matos MAR, Monte MJS, Hillesheim DM (2002). J Chem Thermodyn 34:499–509Google Scholar
  42. 42.
    Matos MAR, Monte MJS, Hillesheim DM (2001). J Chem Thermodyn 33:899–904Google Scholar
  43. 43.
    Chen W, Fu M, Wang H, Zeng Z, Yu B (2018). Struct Chem 29:1273–1285Google Scholar
  44. 44.
    Greenberg A, Winkler R, Smith BL, Liebman JF (1982). J Chem Educ 59:367–370Google Scholar
  45. 45.
    dos Santos IM, Gomes Agra JP, de Carvalho TGC, de Azevedo Maia GL, de Alencar Filho EB (2018). Struct Chem 29:1287–1297Google Scholar
  46. 46.
    Syren PO, Hammer SC, Claasen B, Hauer B (2014). Angew Chem Int Ed 53:4845–4849Google Scholar
  47. 47.
    Anafcheh M, Naderi F, Zahedi M (2018). Struct Chem 29:1299–1306Google Scholar
  48. 48.
    Baran T, Duda A, Penczek S (1984). J Polym Sci Polym Chem Ed 22:1085–1095Google Scholar
  49. 49.
    Ghosh T, Bartlett PD (1988). J Am Chem Soc 110:7499–7506Google Scholar
  50. 50.
    Zaiter A, Zouchoune B (2018). Struct Chem 29:1307–1320Google Scholar
  51. 51.
    Pahl J, Brand S, Elsen H, Harder S (2018). Chem Commun 54:8685–8688Google Scholar
  52. 52.
    Reddic JE, Duncan MA (1999). Chem Phys Lett 312:96–100Google Scholar
  53. 53.
    Nagarajan V, Chandiramouli R (2018). Struct Chem 29:1321–1332Google Scholar
  54. 54.
    Masamune S, Sita LR (1985). J Am Chem Soc 107:6390–6391Google Scholar
  55. 55.
    Biswas S, Shah PK, Shukla PK (2018). Struct Chem 29:1333–1340Google Scholar
  56. 56.
    Zielenkiewicz W (2000). J Chem Eng Data 45:626–629Google Scholar
  57. 57.
    Yi J, Fang H (2018). Struct Chem 29:1341–1350Google Scholar
  58. 58.
    Focante F, Camurati I, Resconi L, Guidotti S, Beringhelli T, D’Alfonso G, Donghi D, Maggioni D, Mercandelli P, Sironi A (2006). Inorg Chem 45:1683–1692Google Scholar
  59. 59.
    Gut IG, Wirz J (1994). Angew Chem Int Ed Eng 33:1153–1156Google Scholar
  60. 60.
    Chermahini AN, Farrokhpour H, Shahangi F, Dabbagh HA (2018). Struct Chem 29:1351–1357Google Scholar
  61. 61.
    Lemoult P (1904). Compt rend 663–665Google Scholar
  62. 62.
    Fischer E, Wrede F (1904). Sitzungsber Dtsch Akad Wiss Berlin Kl Math Phys Tech 687–715Google Scholar
  63. 63.
    Santos AFLOM, Amaral LMPF, Ribeiro da Silva MDMC, Roux MV, Notario R (2013). J Chem Themodyn 58:29–35Google Scholar
  64. 64.
    Yao W, Ma X, Li S, Gao Y, Nian F, Zhou L (2018). Struct Chem 29:1359–1366Google Scholar
  65. 65.
    Bryan AM, Lau K, Olafsson PG (1977). Thermochim Acta 20:363–370Google Scholar
  66. 66.
    Jagiello K, Makurat S, Pereć S, Rak J, Puzyn T (2018). Struct Chem 29:1367–1374Google Scholar
  67. 67.
    Wu RR, Hamlow LA, He CC, Nei YW, Berden G, Oomens J, Rodgers MT (2017). Phys Chem Chem Phys 19:30351–30361Google Scholar
  68. 68.
    Gevrey S, Luna A, Haldys V, Tortajada J, Morizur JP (1998). J Chem Phys 108:2458–2465Google Scholar
  69. 69.
    Hunter EP, Lias SG (1998). J Phys Chem Ref Data 27:413–656Google Scholar
  70. 70.
    Ghule VD, Nirwan A (2018). Struct Chem 29:1375–1382Google Scholar
  71. 71.
    Lebedev VP, Chironov VV, Kizin AN, Falyakhov IF, Saifullin IS, Klyushnikov OR, Orlov YD, Lebedev YA (1995). Izv Akad Nauk Ser Khim 660–662Google Scholar
  72. 72.
    Acree Jr WE, Tucker SA, Ribeiro da Silva MDM, Matos MAR, Gonçalves JM, da Ribeiro Silva MAV, Pilcher G (1995). J Chem Thermodyn 27:391–398Google Scholar
  73. 73.
    Shi Q, Tan Z, Di Y, Tong B, Wang S, Li Y (2007). Thermochim Acta 463:6–9Google Scholar
  74. 74.
    Islas R, Oyarzún DP, Cantero-López P (2018). Struct Chem 29:1383–1395Google Scholar
  75. 75.
    Freivogel P, Grutter M, Forney D, Maier JP (1997). Chem Phys 216:401–406Google Scholar
  76. 76.
    Chopra G, Kaur D, Chopra N (2018). Struct Chem 29:1397–1415Google Scholar
  77. 77.
    Ushakov VS, Sedov SM, Kniazev BA, Kuchkaev BI (1996). Russ J Phys Chem 70:1461–1464Google Scholar
  78. 78.
    Roux MV, Jiménez P, Dávalos JZ, Castaño O, Molina MT, Notario R, Herreros M, Abboud JLM (1996). J Am Chem Soc 118:12735–12737Google Scholar
  79. 79.
    Guthrie JP, Barker J, Cullimore PA, Lu J, Pike DC (1993). Can J Chem 71:2109–2122Google Scholar
  80. 80.
    Dorofeeva OV, Suchkova TA (2019). J Chem Thermodyn 131:254–261Google Scholar
  81. 81.
    Izanloo C (2018). Struct Chem 29:1417–1425Google Scholar
  82. 82.
    Vatanparast M, Shariatinia Z (2018). Struct Chem 29:1427–1448Google Scholar
  83. 83.
    Ribeiro da Silva MDMC, Gonçalves JM, Ferreira SCC, da Silva LCM, Sottomayor MJ, Pilcher G, Acree WE Jr, Roy LE (2001). J Chem Thermodyn 33:1263–1275Google Scholar
  84. 84.
    Blokhina S, Sharapova A, Ol’khovich M, Volkova T, Perlovich G (2015). J Therm Anal Calorim 120:1053–1060Google Scholar
  85. 85.
    Zhao P, Wang Y, Jia Y, Sheng Y (2018). Struct Chem 29:1449–1456Google Scholar
  86. 86.
    Freeman DH, Swahn IS, Hambright P (1990). Energy Fuel 4:699–704Google Scholar
  87. 87.
    Zhu S, Xiang D, Zhao X, Zhu W (2018). Struct Chem 29:1457–1463Google Scholar
  88. 88.
    Doyle Jr RJ, Campana JE (1985). J Phys Chem 89:4251–4256Google Scholar
  89. 89.
    Shiri F, Norouzibazaz M, Yari A, Taherpour AA (2018). Struct Chem 29:1465–1474Google Scholar
  90. 90.
    Berman DW, Anicich V, Beauchamp JL (1979). J Am Chem Soc 101:1239–1248Google Scholar
  91. 91.
    Heck AJR, de Koning LJ, Nibbering NMM (1993). Org Mass Spectrom 28:235–244Google Scholar
  92. 92.
    Minyaev ME, Korchagina SA, Tavtorkin AN, Kostitsyna NN, Churakov AV (2018) Nifant′ev IE. Struct Chem 29:1475–1487Google Scholar
  93. 93.
    Ushakov SV, Helean KB, Navrotsky A, Boatner LA (2001). J Mater Res 16:2623–2633Google Scholar
  94. 94.
    Rončević I, Bibulić P, Vančik H, Biljan I (2018). Struct Chem 29:1489–1497Google Scholar
  95. 95.
    de Meijere A, Kozhushkov SI, Rauch K, Schill H, Verevkin SP, Kümmerlin M, Beckhaus HD, Rüchardt C, Yufit DS (2003). J Am Chem Soc 125:15110–15113Google Scholar
  96. 96.
    Ding Y, Li J, Wang S, Junzhang, Mu Q, Wang J (2018). Struct Chem 29:1499–1510Google Scholar
  97. 97.
    Teo S, Ng C, Teoh S, Fun H (1994). J Coord Chem 33:363–368Google Scholar
  98. 98.
    Haghdadi M, Alashti M, Bosra HG (2018). Struct Chem 29:1511–1523Google Scholar
  99. 99.
    Gavina F, Costero AM, Andreu MR, Ayet MD (1991). J Org Chem 56:5417–5421Google Scholar
  100. 100.
    Fattahi A, Liebman JF, Miranda MS, Morais VMF, Matos MAR, Lis L, Kass SR (2014). Int J Mass Spectrom 369:87–91Google Scholar
  101. 101.
    Fattahi A, Liebman JF, Miranda MS, Morais VMF, Matos MAR, Lis L, Kass SR (2015). Int J Mass Spectrom 378:175–179Google Scholar
  102. 102.
    Maniukiewicz W, Bojarska J, Sieroń L (2018). Struct Chem 29:1525–1531Google Scholar
  103. 103.
    Biernacka J, Betlejewska-Kielak K, Witowska-Jarosz J, Klosinska-Szmurlo E, Mazurek AP (2014). J Incl Phenom Macrocycl Chem 78:437–444Google Scholar
  104. 104.
    Korać J, Todorović N, Zakrzewska J, Žižić M, Spasojević I (2018). Struct Chem 29:1533–1541Google Scholar
  105. 105.
    Weder HG, Wiegand UW (1973). FEBS Lett 38:64–66Google Scholar
  106. 106.
    Chawla ID, Andrews AC (1969). J Inorg Nucl Chem 31:3809–3816Google Scholar
  107. 107.
    Mikhailov OV, Chachkov DV (2018). Struct Chem 29:1543–1549Google Scholar
  108. 108.
    Chachkov DV, Shamsutdinov TF, Mikhailov OV (2017). Vestn Kazan Tekhnol Univ 20:17–23Google Scholar
  109. 109.
    Mikhailov OV, Chachkov DV (2016). Russ J Gen Chem 86:1991–1999Google Scholar
  110. 110.
    O’Kennedy SJ, de Villiers A, Brand DJ, Gerber WJ (2018). Struct Chem 29:1551–1564Google Scholar
  111. 111.
    Chacko SA, Wenthold PG (2007). Int J Mass Spectrom 267:277–283Google Scholar
  112. 112.
    Nelson DJ, Gichuhi WK, Nichols CM, Bierbaum VM, Lineberger WC, Lehman JH (2018). Phys Chem Chem Phys 20:25203–25216Google Scholar
  113. 113.
    Varnali T, Gören B (2018). Struct Chem 29:1565–1571Google Scholar
  114. 114.
    Delamere C, Jakins C, Lewars E (2001). Can J Chem 79:1492–1504Google Scholar
  115. 115.
    Loukhovitski BI, Sharipov AS (2018). Struct Chem 29:1573–1588Google Scholar
  116. 116.
    Goebbert DJ, Hernandez H, Francisco JS, Wenthold PG (2005). J Am Chem Soc 127:11684–11689Google Scholar
  117. 117.
    Workman DB, Squires RR (1988). Inorg Chem 27:1846–1848Google Scholar
  118. 118.
    Spera DZ, Liebman JF (2018). Struct Chem 29:1589–1591Google Scholar
  119. 119.
    Konda R, Titus E, Chaudhari A (2018). Struct Chem 29:1593–1599Google Scholar
  120. 120.
    Du X, Zhang H, Yao Y, Lu Y, Wang Y, Wang Y, Li Z (2018). Struct Chem 29:1601–1607Google Scholar
  121. 121.
    Ribeiro da Silva MAV, Lobo Ferreira AIMC (2009). J Chem Thermodyn 41:361–366Google Scholar
  122. 122.
    Ribeiro da Silva MAV, Monte MJS, Rocha IM, Cimas A (2012). J Org Chem 77:4312–4322Google Scholar
  123. 123.
    Ribeiro da SilvaMAV, Monte MJS, Lobo Ferreira AIMC, Oliveira JASA, Cimas A (2010). J Phys Chem B 114:7909–7919Google Scholar
  124. 124.
    Swarts F (1919). J Chim Phys 17:3–70Google Scholar
  125. 125.
    Aouidate A, Ghaleb A, Ghamali M, Chtita A, Ousaa A, Choukrad M, Sbai A, Bouachrine M, Lakhlifi T (2018). Struct Chem 29:1609–1622Google Scholar
  126. 126.
    d’Aladern R (1983). Compt Rendu:1457–1459Google Scholar
  127. 127.
    Miranda MS, Chickos JS, Esteves da Silva JCG, Liebman JF (2014). J Chem Thermodyn 73:69–75Google Scholar
  128. 128.
    Frank AT, Adenike A, Aebisher D, Greer A, Gao R, Liebman JF (2007). Struct Chem 18:71–74Google Scholar
  129. 129.
    Romero AH (2018). Struct Chem 29:1623–1636Google Scholar
  130. 130.
    Akabli T, Toufik H, Yasri A, Bih H, Lamchouri F (2018). Struct Chem 29:1637–1645Google Scholar
  131. 131.
    Angulo G, Carmona C, Pappalardo RR, Munoz MA, Guardado P, Marcos ES, Balon M (1997). J Org Chem 62:5104–5109Google Scholar
  132. 132.
    Yan B, Yuan T, Li W, Li Q, Cheng J (2018). Struct Chem 29:1647–1653Google Scholar
  133. 133.
    Lai C, Su M, Chu S (2002). J Phys Chem A 106:575–579Google Scholar
  134. 134.
    Lu X, Zhai Y, Song P, Zhang M (2018). Struct Chem 29:1655–1661Google Scholar
  135. 135.
    Silva ALR, Matos MAR, Morais VMF, Ribeiro da Silva MDMC (2018). J Chem Thermodyn 116:7–20Google Scholar
  136. 136.
    Fan Q, Tan H, Wang Y, Song X, Yan H (2018). Struct Chem 29:1663–1670Google Scholar
  137. 137.
    Gomez-Coca RB, Kapinos LE, Holy A, Vilaplana RA, Gonzalez-Vilchez F, Sigel H (2004). J Biol Inorg Chem 9:961–972Google Scholar
  138. 138.
    Peng J, Wang X, Ran L, Song J, Zhang X, Li H (2018). Struct Chem 29:1671–1675Google Scholar
  139. 139.
    Matos MAR, Miranda MS, Martins DVSS, Pinto NAB, Morais VMF, Liebman JF (2004). Org Biomol Chem 2:1353–1358Google Scholar
  140. 140.
    Murugavel S, Sundramoorthy S, Subashini R, Pavan P (2018). Struct Chem 29:1677–1695Google Scholar
  141. 141.
    Ribeiro Da Silva MAV, Matos MAR, Amaral LMPF (2006). J Chem Thermodyn 38:49–55Google Scholar
  142. 142.
    Ribeiro Da Silva MAV, Amaral LMPF (2008). J Therm Anal Calorim 92:53–57Google Scholar
  143. 143.
    Woods SD, Kolodziejczyk W, Kapusta K, Leszczynski J, Hill GA (2018). Struct Chem 29:1697–1707Google Scholar
  144. 144.
    Roux MV, Temprado M, Chickos JS, Nagano Y (2008). J Phys Chem Ref Data 37:1855–1996Google Scholar
  145. 145.
    Barama L, Bayoud B, Chafaa F, Nacereddine AK, Djerourou A (2018). Struct Chem 29:1709–1721Google Scholar
  146. 146.
    Klein J, Brenner S (1969). J Chem Soc D:1020–1021Google Scholar
  147. 147.
    Zeberg EF (1935). Zh Obshch Khi 5:1016–1019Google Scholar
  148. 148.
    Yasarawan N, Thipyapong K (2018). Struct Chem 29:1723–1737Google Scholar
  149. 149.
    Buglyo P, Nagy EM, Sovago I (2005). Pure Appl Chem 77:1583–1594Google Scholar
  150. 150.
    Gharib F, Zare K, Kia M (2003). Zh Neorg Khim 48:1397–1401Google Scholar
  151. 151.
    Li S, Long B, Liu R, Xiong X (2018). Struct Chem 29:1739–1744Google Scholar
  152. 152.
    Schjanberg E (1935). Z Phys Chem Abt A 172:197–233Google Scholar
  153. 153.
    Smith L, Bjellerup L, Krook S, Westermark H (1953). Acta Chem Scand 7:65–86Google Scholar
  154. 154.
    Bamdad M, Farrokhpour H, Najafi B, Ashrafizaadeh M (2018). Struct Chem 29:1745–1751Google Scholar
  155. 155.
    Peddi SR, Sivan SK, Manga V (2018). Struct Chem 29:1753–1766Google Scholar
  156. 156.
    Matos MAR, Liebman JF (2009) In: Krygowski TM, Cyranski MK (eds) Topics in heterocyclic chemistry: aromaticity in heterocyclic chemistry. springer, Heidelberg, p 19Google Scholar
  157. 157.
    Miranda MS, Matos MAR, Morais VMF, Liebman JF (2011). Struct Chem 22:1221–1224Google Scholar
  158. 158.
    Zhang K, Yang G, Jia M, Song Y, Zhao J (2018). Struct Chem 29:1767–1773Google Scholar
  159. 159.
    Jiménez P, Roux MV, Turrión C (1990). J Chem Thermodyn 22:721–726Google Scholar
  160. 160.
    Gopalakrishnan S, Vijayakumar S, Shankar R (2018). Struct Chem 29:1775–1796Google Scholar
  161. 161.
    Emel’yanenko VN, Zaitsau DH, Pimerzin AA, Verevkin SP (2019). J Chem Thermodyn 132:122–128Google Scholar
  162. 162.
    Wu JI, Wannere CS, Mo X, Schleyer PVR, Bunz UHF (2009). J Org Chem 74:4343–4349Google Scholar
  163. 163.
    Čobeljić B, Pevec A, Stepanović S, Milenković MR, Turel I, Gruden M, Radanović D, Anđelković K (2018). Struct Chem 29:1797–1806Google Scholar
  164. 164.
    Rozycki C, Solov’ev YB, Mironov VE (1973). Zh Neorg Khim 18:57–59Google Scholar
  165. 165.
    Rozycki C, Bloklin VV, Mironov VE (1974). Zh Fizich Khim 48:480Google Scholar
  166. 166.
    Zhiani R, Razavipanah I, Emrani S (2018). Struct Chem 29:1807–1815Google Scholar
  167. 167.
    Welle F, Verevkin SP, Keller M, Beckhaus HD, Rüchardt C (1994). Chem Ber 127:697–710Google Scholar
  168. 168.
    Welle FM, Beckhaus HD, Rüchardt C (1997). J Org Chem 62:552–558Google Scholar
  169. 169.
    Wang Y, Yang G, Zhang Q, Song X, Yang D (2018). Struct Chem 29:1817–1823Google Scholar
  170. 170.
    Kovács A (2018). Struct Chem 29:1825–1837Google Scholar
  171. 171.
    Gordienko SP (1989). Poroshk Metall Kiev 7:46–49Google Scholar
  172. 172.
    Viksman GS, Gordienko SP, Fenochka BV (1992). Latv Kim Z:750–752Google Scholar
  173. 173.
    Judycka U, Jagiello K, Gromelski M, Bober L, Błażejowski J, Puzyn T (2018). Struct Chem 29:1839–1844Google Scholar
  174. 174.
    Yang M, Pilcher G, Macnab JI (1994). J Chem Thermodyn 26:787–790Google Scholar
  175. 175.
    Boldyrev BG, Postovskii IY (1950). Zh Obshch Khim 20:936–943Google Scholar
  176. 176.
    Flores H, Camarillo EA, Amador P (2012). J Chem Thermodyn 47:408–411Google Scholar
  177. 177.
    Jafarzadeh R, Azamat J, Erfan-Niya H (2018). Struct Chem 29:1845–1852Google Scholar
  178. 178.
    Kamarchik Jr P, Margrave JL (1978). Acc Chem Res 11:296–300Google Scholar
  179. 179.
    Van Vechten D, Liebman JF (1981). Isr J Chem 21:105–110Google Scholar
  180. 180.
    Mahavadi M, Zeiger DN, Naqib D, Roux MV, Notario R, Liebman JF (2003). Int J Quantum Chem 95:784–790Google Scholar
  181. 181.
    Shanmugam S, Nachimuthu S, Subramaniam V (2018). Struct Chem 29:1853–1865Google Scholar
  182. 182.
    Glezakou VA, Boatz JA, Gordon MS (2002). J Am Chem Soc 124:6144–6152Google Scholar
  183. 183.
    Alberty RA, Chung MB, Reif AK (1990). J Phys Chem Ref Data 19:349–370Google Scholar
  184. 184.
    Tantardini C, Arkipov SG, Cherkashina KA, Kil’met’ev AS, Boldyreva EV (2018). Struct Chem 29:1867–1874Google Scholar
  185. 185.
    Matos MAR, Morais VMF, Miranda MS, Liebman JF (2011). J Chem Thermodyn 43:635–644Google Scholar
  186. 186.
    Ajlouni R (2018). Struct Chem 29:1875–1883Google Scholar
  187. 187.
    Zaitsev AI, Zaitseva NE, Arutyunyan NA, Kalmykov KB, Yazvitskii MY (2006). Dokl Phys Chem 407:67–71Google Scholar
  188. 188.
    Saadi N, Harmelin M, Legendre B (1993). J Chim Phys Phys Chim Biol 90:355–366Google Scholar
  189. 189.
    Chen L, Yu H, Li Y, Zhang X, Du Y (2018). Struct Chem 29:1885–1891Google Scholar
  190. 190.
    Lewandowski W, Janowski A (1988). J Mol Struct 174:201–206Google Scholar
  191. 191.
    Lewandowski W, Baranska H (1988). J Mol Struct 174:417–421Google Scholar
  192. 192.
    Walia GK, Randhawa DKK (2018). Struct Chem 29:1893–1902Google Scholar
  193. 193.
    Becerra R, Cannady JP, Walsh R (2001). J Phys Chem A 105:1897–1903Google Scholar
  194. 194.
    Becerra R, Walsh R (1999). Int J Chem Kinet 31:393–395Google Scholar
  195. 195.
    Becerra R, Cannady JP, Walsh R (2002). J Phys Chem A 106:4922–4927Google Scholar
  196. 196.
    Ostrowska K, Maciejewska D, Cichowicz G, Dobrzyck Ł (2018). Struct Chem 29:1903–1915Google Scholar
  197. 197.
    Sousa CCS, Morais VMF, Matos MAR (2010). J Chem Thermodyn 42:1372–1378Google Scholar
  198. 198.
    Traven VF, Manaev AV, Safronova OB, Chibisova TA, Lysenko KA, Antipin MY (2000). Russ J Gen Chem 70:798–808Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry and TechnologyJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Chemistry and BiochemistryUniversity of MarylandBaltimoreUSA

Personalised recommendations