Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1549–1556 | Cite as

Structural Chemistry, the journal, the discipline, bridge building, and our personal and professional practice

  • Maja Ponikvar-SvetEmail author
  • Joel F. LiebmanEmail author
Review Article
  • 25 Downloads

Abstract

This paper was written on the occasion of the 30th special Jubilee volume of Structural Chemistry journal in 2019. It offered us a unique opportunity to look at our common papers and achievements in the fields of thermochemistry and analytical chemistry with a special emphasis on fluorine-containing species. We have managed to build some new bridges between theory and experiment, and we look forward to building many more.

Keywords

Fluorine chemistry Enthalpy of formation Decomposition Thermochemistry Entropy of formation Statistics Analytical chemistry 

Notes

Funding information

MPS gratefully acknowledges the Slovenian Research Agency (ARRS Grant P1-0045, Inorganic Chemistry and Technology) for financial support.

Compliance with ethical standards

We did not perform any experiments when preparing this review article, so neither ethics review nor informed consent was necessary.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Schmedt auf der Günne J, Mangstl M, Kraus F (2012) Occurrence of difluorine F2 in nature—In situ proof and quantification by NMR spectroscopy. Angew Chem Int Ed 51:7847–7849CrossRefGoogle Scholar
  2. 2.
    Celinski VR, Ditter M, Kraus F, Fujara F, Schmedt auf der Günne J (2016) Trace determination and pressure estimation of fluorine F2 caused by irradiation damage in minerals and synthetic fluorides. Chem Eur J 22:18388–18393CrossRefGoogle Scholar
  3. 3.
    Deakyne CA, Edwards KF, Ponikvar-Svet M, Liebman JF (2016) The existence of Argon Difluoride: Is there any reason for optimism? Intl J Chem Model 8:257–264Google Scholar
  4. 4.
    Jenkins HDB, Ponikvar-Svet M, Liebman JF (2009) Relative packing efficiency in hydrates. J Chem Eng Data 54:2722–2728CrossRefGoogle Scholar
  5. 5.
    Mazej Z, Ponikvar-Svet M, Liebman JF, Passmore J, Jenkins HDB (2009) Nitrosyl and dioxygenyl cations and their salts-Similar but further investigation needed. J Fluorine Chem 130:788–791CrossRefGoogle Scholar
  6. 6.
    Ponikvar M, Liebman JF (2009) Use of Oximes, Hydroxamic Acids and Related Species as Reagents in Inorganic Analytical Chemistry. In: Rappoport Z, Liebman JF (eds) The chemistry of hydroxylamines, oximes and hydroxamic acids, vol 1. Wiley, Chichester, pp 515–552Google Scholar
  7. 7.
    Ponikvar-Svet M, Liebman JF (2012) Aspects of the Chemistry of Species with Carbon-Polonium Bonds. In: Rappoport Z (ed) Patai’s chemistry of functional groups: The chemistry of organic selenium and organic tellurium compounds, vol 3. Wiley, Chichester, pp 1359–1369Google Scholar
  8. 8.
    Ponikvar-Svet M, Edwards KF, Liebman JF (2013) An overview of the understanding of ions containing solely fluorine atoms. Acta Chim Slov 60:471–483Google Scholar
  9. 9.
    Ponikvar-Svet M, Liebman JF (2015) Some systematics and surprises in the energetics and structural preferences of “few-boron species” and related compounds with carbon and nitrogen. New Front Chem 24:27–36Google Scholar
  10. 10.
    Ponikvar-Svet M, Liebman JF (2018) Contemporary use of azophenolates and related species in the determination of metal cations. In: Zabicky J (ed) Patai’s chemistry of functional groups: The chemistry of metal phenolates, vol 2. Wiley, Chichester, pp 383–405Google Scholar
  11. 11.
    Zeiger DN, Liebman JF, Ponikvar-Svet M (2018) Aspects of the energetics of metal β-diketonates and their derivatives. In: Zabicky J (ed) Patai’s chemistry of functional groups: The chemistry of metal enolates, vol 2. Wiley, Chichester, pp 1–24Google Scholar
  12. 12.
    Ponikar-Svet M, Liebman JF (in press) The chemical energetics of the hypervalent organohalogen halosyl, halyl and perhalyl species. In: Olofsson B, Rappoport Z, Marek I (eds) Patai’s chemistry of functional groups: The chemistry of hypervalent halogens. Wiley, ChichesterGoogle Scholar
  13. 13.
    Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11:Supplement 2Google Scholar
  14. 14.
    Miller JC, Miller JN (2010) Statistics and chemometrics for analytical chemistry, 6th edn., Prentice Hall, HarlowGoogle Scholar
  15. 15.
    Ponikvar M, Liebman JF (2006) Paradigms and paradoxes: Patterns and estimation of the entropy of formation of aqueous polynuclear oxyanions. Struct Chem 17:623–629CrossRefGoogle Scholar
  16. 16.
    Ponikvar M, Liebman JF (2007) Paradigms and paradoxes: Patterns and estimation of the entropy of formation of aqueous hydrogen containing mono and polynuclear oxyanions. Struct Chem 18:409–413CrossRefGoogle Scholar
  17. 17.
    Ponikvar M, Jenkins HDB, Liebman JF (2007) Patterns and estimation of the entropies of formation of fluorine containing aqueous anions. Struct Chem 18:883–889CrossRefGoogle Scholar
  18. 18.
    Ponikvar-Svet M, Liebman JF (2009) Paradoxes and paradigms: influence of the power of z on the estimation of entropies of formation of aqueous anions using simple parameters. Struct Chem 20:757–765CrossRefGoogle Scholar
  19. 19.
    Laidler KJ (1956) The entropies of ions in aqueous solutions. I. Dependence on charge and radius. Can J Chem 34:1107–1113CrossRefGoogle Scholar
  20. 20.
    Ponikvar-Svet M, Thomas AT, Dodson BJ, Henegar BM, Brewster MW, Neerchal NK, Liebman JF (2013) Linear model for estimating the entropy of formation of aqueous anions. Struct Chem 24:2069–2082CrossRefGoogle Scholar
  21. 21.
    Ponikvar M, Liebman JF (2007) Paradigms and paradoxes: patterns and estimation of the entropy of formation of some aqueous complex anions. Struct Chem 18:501–508Google Scholar
  22. 22.
    Ponikvar M, Liebman JF (2004) Paradoxes and paradigms: Aqueous polynuclear oxyanions of sulfur and homologous series. Struct Chem 15:539–542CrossRefGoogle Scholar
  23. 23.
    Ponikvar M, Liebman JF (2005) Paradoxes and paradigms: When do alkali metal (Na) and alkaline earth (Mg, Ca) halides (F, Cl) completely dissociate? A combined analytical and thermochemical approach. Struct Chem 16:587–591CrossRefGoogle Scholar
  24. 24.
    Liebman JF, Romm MJ, Meot-Ner (Mautner) M, Cybulski SM, Scheiner S (1991) Isotropy in ionic interactions II: How spherical is the ammonium ion? Comparison of the gas-phase clustering energies and condensed-phase thermochemistry of K+ and NH4 +. J Phys Chem 95:1112–1119CrossRefGoogle Scholar
  25. 25.
    Jenkins HDB, Liebman JF, Ponikvar M, Scheiner S (2009) The heat capacities and standard entropies of corresponding potassium and ammonium ion species: is there a constant difference? Struct Chem 20:31–35CrossRefGoogle Scholar
  26. 26.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2015) Which halogen is the strongest oxidant? A study with systematics and surprises. Struct Chem 26:1621–1628CrossRefGoogle Scholar
  27. 27.
    Sedej B (1976) A refined chemical analysis of SnF2·AsF5. Talanta 23:335–336CrossRefGoogle Scholar
  28. 28.
    Ponikvar M, Liebman JF, Jenkins HDB (2004) The redox chemistry of SbF6 ion. Eur J Inorg Chem 2004:3273–3276CrossRefGoogle Scholar
  29. 29.
    Ponikvar M, Sedej B, Pihlar B, Žemva B (2000) Determination of fluoride in M(SbF6)x compounds. Anal Chim Acta 418:113–118CrossRefGoogle Scholar
  30. 30.
    Liebman JF, Ponikvar M (2005) Ion selective electrode determination of free versus total fluoride ion in simple and fluoroligand coordinated hexafluoropnictate (PnF6 , Pn = P, As, Sb, Bi) salts. Struct Chem 16:521–528CrossRefGoogle Scholar
  31. 31.
    Ponikvar M, Žemva B, Liebman JF (2003) The analytical and descriptive inorganic chemistry of the hydrolysis of hexafluoropnictate ions, PnF6 (Pn = P, As, Sb, Bi). J Fluorine Chem 123:217–220CrossRefGoogle Scholar
  32. 32.
    Ponikvar M, Sedej B, Liebman JF (2004) The solid-state lanthanoid-assisted hydrolysis of the solvolytically “inert” [AsF6] ion. Eur J Inorg Chem 1349–1352Google Scholar
  33. 33.
    Ponikvar M, Liebman JF (2006) Paradoxes and paradigms: Observations on pyrohydrolytic decomposition of fluorine-containing materials and accompanying thermochemistry. Struct Chem 17:75–78CrossRefGoogle Scholar
  34. 34.
    Pavlović D, Ponikvar-Svet M, Liebman JF (2018) Paradoxes and paradigms: observations on pyrohydrolysis, oxygen bomb combustion, and alkaline carbonate fusion, most frequently used decomposition methods for subsequent determination of fluorine and accompanying thermochemistry. Struct Chem 29:1247–1254CrossRefGoogle Scholar
  35. 35.
    Frant MS, Ross JW (1966) Electrode for sensing fluoride ion activity in solution. Science 154:1553–1555CrossRefGoogle Scholar
  36. 36.
    Nardozzi MJ, Lewis LL (1961) Pyrolytic separation and determination of fluoride in raw materials. Anal Chem 33:1261–1264CrossRefGoogle Scholar
  37. 37.
    Clements RL, Sergeant GA, Webb PJ (1971) The determination of fluorine in rocks and minerals by a pyrohydrolytic method. Analyst 66:51–54CrossRefGoogle Scholar
  38. 38.
    Bailey JJ (1961) Determination of traces of sulfur, fluorine, and boron in organic materials by oxygen bomb combustion. Anal Chem 33:1760–1762CrossRefGoogle Scholar
  39. 39.
    Thomas J, Gluskoter HJ (1974) Determination of fluoride in coal with the fluoride ion-selective electrode. Anal Chem 46:1321–1323CrossRefGoogle Scholar
  40. 40.
    Cornog J, Hopson H (1930) The alkali carbonate fusion in qualitative analysis. J Chem Educ 7:618–623CrossRefGoogle Scholar
  41. 41.
    Bock R (1979) A handbook of decomposition methods in analytical chemistry. Blackie Group, LondonGoogle Scholar
  42. 42.
    Warf JC, Cline WD, Tevebaugh RD (1954) Pyrohydrolysis in the determination of fluoride and, other halides. Anal Chem 26:342–346CrossRefGoogle Scholar
  43. 43.
    Simmons Booth H (1936) Thermal decomposition of fluoro compounds. United States Patent Office 2:053,174Google Scholar
  44. 44.
    Liebman JF (2003) Interplay of thermochemistry and Structural Chemistry, the journal (Volume 11, 2000), and the discipline. Struct Chem 14:299–313CrossRefGoogle Scholar
  45. 45.
    Liebman JF (2003) Interplay of thermochemistry and Structural Chemistry, the journal and the discipline, part 2: Volume 12, 2001. Struct Chem 14:403–415CrossRefGoogle Scholar
  46. 46.
    Stem-Beren MR, Liebman JF (2005) Interplay of thermochemistry and structural chemistry, the journal (volume 13, 2002) and the discipline. Struct Chem 16:159–168CrossRefGoogle Scholar
  47. 47.
    Stem MR, Liebman JF (2005) Interplay of thermochemistry and structural chemistry, the journal (volume 14, 2003) and the discipline. Struct Chem 16:593–603CrossRefGoogle Scholar
  48. 48.
    Stem MR, Liebman JF (2006) Interplay of thermochemistry and structural chemistry, the journal (volume 15, 2004) and the discipline. Struct Chem 17:367–376CrossRefGoogle Scholar
  49. 49.
    Ponikvar-Svet M, Keating LR, Dodson BJ, Liebman JF (2010) Interplay of thermochemistry and Structural Chemistry, the journal (volume 16, 2005) and the discipline. Struct Chem 21:527–540CrossRefGoogle Scholar
  50. 50.
    Ponikvar-Svet M, Liebman JF (2009) Interplay of thermochemistry and Structural Chemistry, the journal (volume 17, 2006) and the discipline. Struct Chem 20:1019–1037CrossRefGoogle Scholar
  51. 51.
    Ponikvar M, Liebman JF (2008) Interplay of thermochemistry and Structural Chemistry, the journal (volume 18, 2007) and the discipline. Struct Chem 19:849–872CrossRefGoogle Scholar
  52. 52.
    Ponikvar-Svet M, Keating LR, Dodson BJ, Liebman JF (2009) Interplay of thermochemistry and Structural Chemistry, the journal (volume 19, 2008) and the discipline. Struct Chem 20:719–741CrossRefGoogle Scholar
  53. 53.
    Ponikvar-Svet M, Liebman JF (2010) Interplay of thermochemistry and Structural Chemistry, the journal (volume 20, 2009) and the discipline. Struct Chem 21:1131–1149CrossRefGoogle Scholar
  54. 54.
    Ponikvar-Svet M, Liebman JF (2011) Interplay of thermochemistry and Structural Chemistry, the journal (volume 21, 2010) and the discipline. Struct Chem 22:717–740CrossRefGoogle Scholar
  55. 55.
    Ponikvar-Svet M, Liebman JF (2011) Interplay of thermochemistry and Structural Chemistry, the Journal (volume 22, 2011, issues 1-3) and the discipline. Struct Chem 22:1179–1192CrossRefGoogle Scholar
  56. 56.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2012) Interplay of thermochemistry and Structural Chemistry, the journal (volume 22, 2011, issues 4-6) and the discipline. Struct Chem 23:1267–1280CrossRefGoogle Scholar
  57. 57.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2012) Interplay of thermochemistry and Structural Chemistry, the journal (volume 23, 2012, issues 1-3) and the discipline. Struct Chem 23:2019–2037CrossRefGoogle Scholar
  58. 58.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2013) Interplay of thermochemistry and Structural Chemistry, the journal (volume 23, 2012, issues 4-6) and the discipline. Struct Chem 24:1759–1779CrossRefGoogle Scholar
  59. 59.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2013) Interplay of thermochemistry and structural chemistry, the journal (volume 24, 2013, issues 1-2) and the discipline. Struct Chem 24:2101–2114CrossRefGoogle Scholar
  60. 60.
    Ponikvar-Svet M, Zeiger DN, Keating LR, Liebman JF (2014) Interplay of thermochemistry and structural chemistry, the journal (volume 24, 2013, issues 3-4) and the discipline. Struct Chem 25:1581–1592CrossRefGoogle Scholar
  61. 61.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2014) Interplay of thermochemistry and structural chemistry, the journal (volume 24, 2013, issues 5-6) and the discipline. Struct Chem 25:1881–1894CrossRefGoogle Scholar
  62. 62.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2015) Interplay of thermochemistry and structural chemistry, the journal (volume 25, 2014, issues 1-2) and the discipline. Struct Chem 26:623–635CrossRefGoogle Scholar
  63. 63.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2015) Interplay of thermochemistry and Structural Chemistry, the journal (Volume 25, 2014, Issues 3-4) and the discipline. Struct Chem 26:887–898CrossRefGoogle Scholar
  64. 64.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2015) Interplay of thermochemistry and Structural Chemistry, the journal (Volume 25, 2014, Issues 5-6) and the discipline. Struct Chem 26:1729–1739CrossRefGoogle Scholar
  65. 65.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2016) Interplay of thermochemistry and Structural Chemistry, the journal (Volume 26, 2015, Issues 1-2) and the discipline. Struct Chem 27:1017–1026CrossRefGoogle Scholar
  66. 66.
    Ponikvar-Svet M, Liebman JF (2016) Interplay of thermochemistry and Structural Chemistry, the journal (volume 26, 2015, issues 3-4) and the discipline. Struct Chem 27:1869–1878CrossRefGoogle Scholar
  67. 67.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017) Interplay of thermochemistry and Structural Chemistry, the journal (volume 26, 2015, issue 5) and the discipline. Struct Chem 28:879–887CrossRefGoogle Scholar
  68. 68.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017) Interplay of thermochemistry and Structural Chemistry, the journal (volume 27, 2016, issues 1-2) and the discipline. Struct Chem 28:889–899CrossRefGoogle Scholar
  69. 69.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017) Interplay of thermochemistry and Structural Chemistry, the journal (volume 27, 2016, issues 3-4) and the discipline. Struct Chem 28:1265–1273CrossRefGoogle Scholar
  70. 70.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2017) Interplay of thermochemistry and Structural Chemistry, the journal (Volume 27, 2016, Issues 5 and 6) and the discipline. Struct Chem 28:1981–1988CrossRefGoogle Scholar
  71. 71.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2018) Interplay of thermochemistry and Structural Chemistry, the journal (volume 28, 2017, issues 1-2) and the discipline. Struct Chem 29:947–955CrossRefGoogle Scholar
  72. 72.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2018) Interplay of thermochemistry and Structural Chemistry, the journal (volume 28, 2017, issues 3-4) and the discipline. Struct Chem 29:1235–1245CrossRefGoogle Scholar
  73. 73.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2019) Interplay of thermochemistry and Structural Chemistry, the journal (volume 28, 2017, issues 5-6), and the discipline. Struct Chem 30:1095–1104CrossRefGoogle Scholar
  74. 74.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2019) Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 1-2) and the discipline. Struct Chem 30:1105–1115CrossRefGoogle Scholar
  75. 75.
    Ponikvar-Svet M, Zeiger DN, Liebman JF (2019) Interplay of thermochemistry and Structural Chemistry, the journal (volume 29, 2018, issues 3–4) and the discipline. Struct Chem 30:1517–1526Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry and TechnologyJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Chemistry and BiochemistryUniversity of MarylandBaltimoreUSA

Personalised recommendations