Synthesis, structural analysis, and photophysical properties of bi-1,2,3-triazoles

  • Ivette Santana-Martínez
  • María Teresa Ramírez-Palma
  • Javier Sánchez-Escalera
  • Diego Martínez-Otero
  • Marco A. García-Eleno
  • Alejandro Dorazco-González
  • Erick Cuevas-YañezEmail author
Original Research


Structural insights of a group of bi-1,2,3-triazoles derived from oxidative CuAAC are described through an X-ray crystallography study, distinguishing a dihedral angle which is ranged from 76.45 to 86.39° between the two 1,2,3-triazole rings. In addition, compound 1 containing a phenyl moiety displays a strong blue emission (λem = 394 nm); this structure-related photoluminescence is attributed to the rigidity of the molecule and the conjugation between phenyl groups and the triazole fragments.


Bi-1,2,3-triazole Crystal structure Dihedral angle Fluorescent emission 



The authors would like to thank N. Zavala, A. Nuñez, and L. Triana for the technical support.

Funding information

Financial support from CONACYT is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Santana-Martinez I, Cuevas-Yañez E (2017) Bi-1,2,3-Triazoles: Synthesis and Perspectives. In: Chen Y, Tong ZR (eds) Click chemistry: approaches, applications and challenges. Nova Science Publishers, New York, pp 51–68Google Scholar
  2. 2.
    Zheng ZJ, Wang D, Xu Z, Xu LW (2015) Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: a family of valuable products by click chemistry. Beilstein J Org Chem 11:2557–25776CrossRefGoogle Scholar
  3. 3.
    Angell Y, Burgess K (2007) Base dependence in copper-catalyzed Huisgen reactions: efficient formation of bistriazoles. Angew Chem Int Ed 46:3649–3651CrossRefGoogle Scholar
  4. 4.
    Monkowius U, Ritter S, König B, Zabel M, Yersin H (2005) Synthesis, characterisation and ligand properties of novel bi-1,2,3-triazole ligands. Eur J Inorg Chem:4597–4606Google Scholar
  5. 5.
    Brassard CJ, Zhang X, Brewer CR, Liu P, Clark RJ, Zhu L (2016) Cu (II)-catalyzed oxidative formation of 5,5′-bistriazoles. J Organomet Chem 81:12091–12105CrossRefGoogle Scholar
  6. 6.
    Key JA, Cairo CW, Ferguson MJ (2008) 7,70-(3,30-Dibenzyl-3H,30H-4,40-bi-1,2,3-triazole-5,500-diyl)bis(4-methyl-2hchromen-2-one). Acta Crystallogr E E64: o1910.Google Scholar
  7. 7.
    Miyanishi S, Zhang Y, Hashimoto K, Tajima K (2012) Controlled synthesis of fullerene-attached poly(3-alkylthiophene)-based copolymers for rational morphological design in polymer photovoltaic devices. Macromolecules 45:6424–6437CrossRefGoogle Scholar
  8. 8.
    de la Cerda-Pedro JE, Rojas-Lima S, Santillan R, López-Ruiz H (2015) Phenylboronic Acid/CuSO4 as an efficient catalyst for the synthesis of 1,4-disubstituted-1,2,3-triazoles from terminal acetylenes and alkyl azides. J Mex Chem Soc 59:130–136Google Scholar
  9. 9.
    Kwon M, Jang Y, Yoon S, Yang D, Jeon HB (2012) Unusual Cu(I)-catalyzed 1,3-dipolar cycloaddition of acetylenic amides: formation of bistriazoles. Tetrahedron Lett 53:1606–1609CrossRefGoogle Scholar
  10. 10.
    Goyard D, Chajistamatiou AS, Sotiropoulou AI, Chrysina ED, Praly JP, Vidal S (2014) Efficient atropodiastereoselective access to 5,5’-bis-1,2,3-triazoles: studies on 1-glucosylated 5-halogeno 1,2,3-triazoles and their 5-substituted derivatives as glycogen phosphorylase inhibitors. Chem Eur J 20:5423–5432CrossRefGoogle Scholar
  11. 11.
    González J, Pérez VM, Jiménez DO, Lopez-Valdez G, Corona D, Cuevas-Yañez E (2011) Effect of temperature on triazole and bistriazole formation through copper-catalyzed alkyne–azide cycloaddition. Tetrahedron Lett 52:3514–3517CrossRefGoogle Scholar
  12. 12.
    Parmar D, Sugiono E, Raja S, Rueping M (2014) Complete field guide to asymmetric binol-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev 114:9047–9153CrossRefGoogle Scholar
  13. 13.
    Brunel JM (2005) BINOL: a versatile chiral reagent. Chem Rev 105:857–898CrossRefGoogle Scholar
  14. 14.
    Chen Y, Yekta S, Yudin AK (2003) Modified BINOL ligands in asymmetric catalysis. Chem Rev 103:3155–3212CrossRefGoogle Scholar
  15. 15.
    Kaes C, Katz A, Hosseini MW (2000) Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2’-bipyridine units. Chem Rev 100:3553–3590CrossRefGoogle Scholar
  16. 16.
    Murata T, Yakiyama Y, Nakasuji K, Morita Y (2010) Supramolecular architectures and hydrogen-bond directionalities of 4,40-biimidazole metal complexes depending on coordination geometries. Cryst Growth Des 10:4898–4905CrossRefGoogle Scholar
  17. 17.
    Kennedy DC, James BR (2010) Syntheses of ruthenium(II)-4,4’-biimidazole complexes and their potential anti-tumour activity. Can J Chem 88:886–892CrossRefGoogle Scholar
  18. 18.
    Baig RBN, Varma RS (2013) Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem 15:398–417CrossRefGoogle Scholar
  19. 19.
    Luque R, Baruwati B, Varma RS (2010) Magnetically separable nanoferrite-anchored glutathione: aqueous homocoupling of arylboronic acids under microwave irradiation. Green Chem 12:1540–1543CrossRefGoogle Scholar
  20. 20.
    Liu X, Gao W, Sun P, Su Z, Chen S, Wei Q, Xie G, Gao S (2015) Environmentally friendly high-energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances. Green Chem 17:831–836CrossRefGoogle Scholar
  21. 21.
    Wang XL, Cao JJ, Liu GC, Tian AX, Luan J, Lin HY, Zhang JW, Li N (2014) Keggin-based 3D frameworks tuned by silver polymeric motifs: effect of the bi(triazole) substituent group on the architectures. CrystEngComm 16:5732–5740CrossRefGoogle Scholar
  22. 22.
    Katan C, Savel P, Wong BM, Roisnel T, Dorcet V, Fillaut JL, Jacquemin D (2014) Absorption and fluorescence signatures of 1,2,3-triazole based regioisomers: challenging compounds for TD-DFT. Phys Chem Chem Phys 16:9064–9073CrossRefGoogle Scholar
  23. 23.
    Ghosh D, Rhodes S, Hawkins K, Winder D, Atkinson A, Ming W, Padgett C, Orvis J, Aiken K, Landge S (2015) A simple and effective 1,2,3-triazole based “turn-on” fluorescence sensor for the detection of anions. New J Chem 39:295–303CrossRefGoogle Scholar
  24. 24.
    White NG, Beer PD (2013) A rotaxane host system containing integrated triazole C–H hydrogen bond donors for anion recognition. Org Biomol Chem 11:1326–1333CrossRefGoogle Scholar
  25. 25.
    Lee IL, Sung YM, Wu CH (2014) Wu SP (2014) Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles. Microchim Acta 181:573–579CrossRefGoogle Scholar
  26. 26.
    Fernández-Hernández JM, Beltrán JI, Lemaur V, Gálvez-López MD, Chien CH, Polo F, Orselli E, Fröhlich R, Cornil J, De Cola L (2013) Iridium(III) emitters based on 1,4-disubstituted-1H-1,2,3-triazoles as cyclometalating ligand: synthesis, characterization, and electroluminescent deviceS. Inorg Chem 52:1812–1824CrossRefGoogle Scholar
  27. 27.
    Hao E, Meng ZTM, Pang W, Zhou Y, Jiao L (2011) Solvent dependent fluorescent properties of a 1,2,3-triazole linked 8-hydroxyquinoline chemosensor: tunable detection from zinc(II) to Iron(III) in the CH3CN/H2O System. J Phys Chem A 115:8234–8241CrossRefGoogle Scholar
  28. 28.
    Kim SH, Choi HS, Kim J, Lee SJ, Quango DT, Kim JS (2010) Novel optical/electrochemical selective 1,2,3-triazole ring-appended chemosensor for the Al3+ ion. Org Lett 12:560–563CrossRefGoogle Scholar
  29. 29.
    Erdemir S, Kocyigit O, Malkondu SJ (2015) Detection of Hg2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole–rhodamine. J Photochem Photobiol A 309:15–21Google Scholar
  30. 30.
    AEl-Betany AMM, McKeown NB (2012) The synthesis and fluorescence properties of macromolecular components based on 1,8-naphthalimide derivatives and dimers. Tetrahedron Lett 53:808–810CrossRefGoogle Scholar
  31. 31.
    Zoon PD, Van Stokkum IHM, IHM PM, Mongin O, Blanchard-Desce M, Brouwer AM (2010) Fast photo-processes in triazole-based push–pull systems. Phys Chem Chem Phys 12:2706–2715CrossRefGoogle Scholar
  32. 32.
    Zhou Z, Fahrni CJ (2004) A fluorogenic probe for the copper(I)-catalyzed azide−alkyne ligation reaction: modulation of the fluorescence emission via 3(n,π*)−(π,π*) inversion. J Am Chem Soc 126:8862–8863CrossRefGoogle Scholar
  33. 33.
    Parent M, Mongin O, Kamada K, Katan C, Blanchard-Desce M (2005) New chromophores from click chemistry for two-photon absorption and tuneable photoluminescence. Chem Commun:2029–2031Google Scholar
  34. 34.
    Welby CE, Grkinic S, Zahid A, Uppal BS, Gibson EA, Rice CR, Elliott PIP (2012) Synthesis, characterisation and theoretical study of ruthenium 4,4′-bi-1,2,3-triazolyl complexes: fundamental switching of the nature of S1 and T1 states from MLCT to MC. Dalton Trans 41:7637–7646CrossRefGoogle Scholar
  35. 35.
    Welby CE, Armitage GK, Bartley H, Sinopoli A, Uppal BS, Elliott PIP (2014) Photochemical ligand ejection from non-sterically promoted Ru(II)bis(diimine) 4,4’-bi-1,2,3-triazolyl complexes. Photochem Photobiol Sci 13:735–738CrossRefGoogle Scholar
  36. 36.
    Welby CE, Gilmartin L, Marriott RR, Zahid A, Rice CR, Gibson EA, Elliott PIP (2013) Luminescent biscyclometalated arylpyridine iridium(III) complexes with 4,4’-bi-1,2,3-triazolyl ancillary ligands. Dalton Trans 42:13527–13536CrossRefGoogle Scholar
  37. 37.
    Ross DAW, Scattergood PA, Babaei A, Pertegás A, Bolink HJ, Elliott PIP (2016) Luminescent osmium(II) bi-1,2,3-triazol-4-yl complexes: photophysical characterisation and application in light-emitting electrochemical cells. Dalton Trans 45:7748–7757CrossRefGoogle Scholar
  38. 38.
    García MA, Ríos ZG, González J, Pérez VM, Lara N, Fuentes A, González C, Corona D, Cuevas-Yañez E (2011) The use of glucose as alternative reducing agent in copper-catalyzed alkyne-azide cycloaddition. Lett Org Chem 8:701–706CrossRefGoogle Scholar
  39. 39.
    Scattergood PA, Sinopoli A, Elliott PIP (2017) Photophysics and photochemistry of 1,2,3-triazole-based complexes. Coord Chem Rev 350:136–154CrossRefGoogle Scholar
  40. 40.
    Rendón-Balboa JC, Villanueva-Sánchez L, Rosales-Vázquez LD, Valdes-García J, Vilchis-Nestor AR, Martínez-Otero D, Martínez-Vargas S, Dorazco-González A (2018) Structure of a luminescent 3D coordination polymer constructed with a trinuclear core of cadmium-trimesate and isoquinoline. Inorg Chim Acta 483:235–240CrossRefGoogle Scholar
  41. 41.
    Jarowski PD, Wu YL, Schweizer WB, Diederich F (2008) 1,2,3-Triazoles as conjugative π-linkers in push−pull chromophores: importance of substituent positioning on intramolecular charge-transfer. Org Lett 10:3347–3350CrossRefGoogle Scholar
  42. 42.
    Yan W, Wang Q, Lin Q, Li M, Petersen JL, Shi X (2011) N-2-Aryl-1,2,3-triazoles: A novel class of UV/blue-light-emitting fluorophores with tunable optical properties. Chem Eur J 17:5011–5018CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ivette Santana-Martínez
    • 1
  • María Teresa Ramírez-Palma
    • 1
  • Javier Sánchez-Escalera
    • 1
  • Diego Martínez-Otero
    • 1
  • Marco A. García-Eleno
    • 1
  • Alejandro Dorazco-González
    • 1
  • Erick Cuevas-Yañez
    • 1
    Email author
  1. 1.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAMUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations