Advertisement

Hydrazine trapping ability of Si12C12 fullerene-like nanoclusters: a DFT study

  • Rezvan Rahimi
  • Mohammad SolimannejadEmail author
Original Research
  • 6 Downloads

Abstract

In this study, the nondissociative hydrazine (N2H4) adsorption on the surface of Si12C12 nanoclusters have been investigated using density functional theory at wB97XD/6-31G(d) computational level. It is shown that Si12C12 nanocage can hold up to five N2H4 molecules with the maximum average adsorption energy per hydrazine molecule of − 46.11 kcal/mol. The calculated hydrazine uptake capacity of desired nanocage reached up to 25% which are lies in the desirable range for practical applications. The results show that adsorption of hydrazine monomers on Si12C12 nanocage are more appropriate than adsorption of hydrazine dimers.

Keywords

Hydrazine Si12C12 nanocage DFT 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tafreshi SS, Roldan A, de Leeuw NH (2015) Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped cu (111) surfaces. Phys Chem Chem Phys 17:21533–21546CrossRefGoogle Scholar
  2. 2.
    Li S, Qu K, Zhao H, Ding L, Du L (2016) Clustering of amines and hydrazines in atmospheric nucleation. Chem Phys 472:198–207CrossRefGoogle Scholar
  3. 3.
    Zhong Y-J, Dai H-B, Zhu M, Wang P (2016) Catalytic decomposition of hydrous hydrazine over NiPt/La2O3 catalyst: a high-performance hydrogen storage system. Int J Hydrog Energy 41:11042–11049CrossRefGoogle Scholar
  4. 4.
    Tafreshi SS, Roldan A, Dzade NY, de Leeuw NH (2014) Adsorption of hydrazine on the perfect and defective copper (111) surface: a dispersion-corrected DFT study. Surf Sci 622:1–8CrossRefGoogle Scholar
  5. 5.
    Song J, Ran R, Shao Z (2010) Hydrazine as efficient fuel for low-temperature SOFC through ex-situ catalytic decomposition with high selectivity toward hydrogen. Int J Hydrog Energy 35:7919–7924CrossRefGoogle Scholar
  6. 6.
    Yamada K, Asazawa K, Yasuda K, Ioroi T, Tanaka H, Miyazaki Y, Kobayashi T (2003) Investigation of PEM type direct hydrazine fuel cell. J Power Sources 115:236–242CrossRefGoogle Scholar
  7. 7.
    Baei MT, Soltani A, Hashemian S (2016) Adsorption properties of hydrazine on pristine and Si-doped Al12N12 nano-cage. Phosphorus Sulfur Silicon Relat Elem 191:702–708CrossRefGoogle Scholar
  8. 8.
    Ensafi AA, Mirmomtaz E (2005) Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode. J Electroanal Chem 583:176–183CrossRefGoogle Scholar
  9. 9.
    Courthéoux L, Amariei D, Rossignol S, Kappenstein C (2005) Facile catalytic decomposition at low temperature of energetic ionic liquid as hydrazine substitute. Eur J Inorg Chem 2005:2293–2295CrossRefGoogle Scholar
  10. 10.
    Kohata K, Fukuyama T, Kuchitsu K (1982) Molecular structure of hydrazine as studied by gas electron diffraction. J Phys Chem 86:602–606CrossRefGoogle Scholar
  11. 11.
    Cabaleiro-Lago EM, Ríos MA (1999) Ab initio study of interactions in hydrazine clusters of one to four molecules: cooperativity in the interaction. J Phys Chem A 103:6468–6474CrossRefGoogle Scholar
  12. 12.
    Dyczmons V (2000) Six structures of the hydrazine dimer. J Phys Chem A 104:8263–8269CrossRefGoogle Scholar
  13. 13.
    Zhang P-X, Wang Y-G, Huang Y-Q, Zhang T, Wu G-S, Li J (2011) Density functional theory investigations on the catalytic mechanisms of hydrazine decompositions on Ir (1 1 1). Catal Today 165:80–88CrossRefGoogle Scholar
  14. 14.
    Agusta MK, David M, Nakanishi H, Kasai H (2010) Hydrazine (N2H4) adsorption on Ni (1 0 0)–density functional theory investigation. Surf Sci 604:245–251CrossRefGoogle Scholar
  15. 15.
    Agusta MK, Kasai H (2012) First principles investigations of hydrazine adsorption conformations on Ni (111) surface. Surf Sci 606:766–771CrossRefGoogle Scholar
  16. 16.
    Fathurrahman F, Kasai H (2015) Density functional study of hydrazine adsorption and its NN bond cleaving on Fe (110) surface. Surf Sci 639:25–31CrossRefGoogle Scholar
  17. 17.
    He YB, Jia JF, Wu HS (2015) The interaction of hydrazine with an Rh (1 1 1) surface as a model for adsorption to rhodium nanoparticles: a dispersion-corrected DFT study. Appl Surf Sci 327:462–469CrossRefGoogle Scholar
  18. 18.
    He Y-B, Jia J-F, Wu H-S (2015) First-principles investigation of the molecular adsorption and dissociation of hydrazine on Ni–Fe alloy surfaces. J Phys Chem C 119:8763–8774CrossRefGoogle Scholar
  19. 19.
    He Y-B, Jia J-F, Wu H-S (2015) Selectivity of Ni-based surface alloys toward hydrazine adsorption: a DFT study with van der Waals interactions. Appl Surf Sci 339:36–45CrossRefGoogle Scholar
  20. 20.
    Tafreshi SS, Roldan A, de Leeuw NH (2014) Density functional theory study of the adsorption of hydrazine on the perfect and defective copper (100),(110), and (111) surfaces. J Phys Chem C 118:26103–26114CrossRefGoogle Scholar
  21. 21.
    Zhao B, Song J, Ran R, Shao Z (2012) Catalytic decomposition of hydrous hydrazine to hydrogen over oxide catalysts at ambient conditions for PEMFCs. Int J Hydrog Energy 37:1133–1139CrossRefGoogle Scholar
  22. 22.
    Singh SK, Xu Q (2009) Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J Am Chem Soc 131:18032–18033CrossRefGoogle Scholar
  23. 23.
    Gu H, Ran R, Zhou W, Shao Z, Jin W, Xu N, Ahn J (2008) Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. J Power Sources 177:323–329CrossRefGoogle Scholar
  24. 24.
    Lin Y, Ran R, Guo Y, Zhou W, Cai R, Wang J, Shao Z (2010) Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. Int J Hydrog Energy 35:2637–2642CrossRefGoogle Scholar
  25. 25.
    Esrafili MD, Teymurian VM, Nurazar R (2015) Catalytic dehydrogenation of hydrazine on silicon-carbide nanotubes: a DFT study on the kinetic issue. Surf Sci 632:118–125CrossRefGoogle Scholar
  26. 26.
    Duan XF, Burggraf LW (2015) Theoretical investigation of stabilities and optical properties of Si12C12 clusters. J Chem Phys 142:034303CrossRefGoogle Scholar
  27. 27.
    Mo Y, Shajahan M, Lee Y, Hahn Y, Nahm K (2004) Structural transformation of carbon nanotubes to silicon carbide nanorods or microcrystals by the reaction with different silicon sources in rf induced CVD reactor. Synth Met 140:309–315CrossRefGoogle Scholar
  28. 28.
    Pan Z, Lai HL, Au FC, Duan X, Zhou W, Shi W, Wang N, Lee CS, Wong NB, Lee ST (2000) Oriented silicon carbide nanowires: synthesis and field emission properties. Adv Mater 12:1186–1190CrossRefGoogle Scholar
  29. 29.
    Khataee A, Hasanzadeh A, Iranifam M, Joo SW (2015) A novel flow-injection chemiluminescence method for determination of baclofen using l-cysteine capped CdS quantum dots. Sensors Actuators B Chem 215:272–282CrossRefGoogle Scholar
  30. 30.
    Guzelturk B, Kelestemur Y, Gungor K, Yeltik A, Akgul MZ, Wang Y, Chen R, Dang C, Sun H, Demir HV (2015) Stable and low-threshold optical gain in CdSe/CdS quantum dots: an all-colloidal frequency up-converted laser. Adv Mater 27:2741–2746CrossRefGoogle Scholar
  31. 31.
    Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon 41:2131–2139CrossRefGoogle Scholar
  32. 32.
    Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88:459–461CrossRefGoogle Scholar
  33. 33.
    Tang C, Fan S, Dang H, Zhao J, Zhang C, Li P, Gu Q (2000) Growth of SiC nanorods prepared by carbon nanotubes-confined reaction. J Cryst Growth 210:595–599CrossRefGoogle Scholar
  34. 34.
    Khan A, Jacob C (2014) Random and self-aligned growth of 3C-SiC nanorods via VLS–VS mechanism on the same silicon substrate. Mater Lett 135:103–106CrossRefGoogle Scholar
  35. 35.
    Li P, Xu L, Qian Y (2008) Selective synthesis of 3C-SiC hollow nanospheres and nanowires. Cryst Growth Des 8:2431–2436CrossRefGoogle Scholar
  36. 36.
    Zhao M, Xia Y, Mei L (2012) Silicon carbide Nanocages and nanotubes: analogs of carbon fullerenes and nanotubes or not? J Comput Theor Nanosci 9:1999–2007CrossRefGoogle Scholar
  37. 37.
    Magyar AP, Aharonovich I, Baram M, Hu EL (2013) Photoluminescent SiC tetrapods. Nano Lett 13:1210–1215CrossRefGoogle Scholar
  38. 38.
    Solimannejad M, Rahimi R, Kamalinahad S (2017) Nonlinear optical (NLO) response of Si12C12 Nanocage decorated with alkali metals (M= Li, Na and K): a theoretical study. J Inorg Organomet Polym Mater 27:1234–1242CrossRefGoogle Scholar
  39. 39.
    Solimannejad M, Anjiraki AK, Kamalinahad S (2017) Sensing performance of cu-decorated Si12C12 nanocage towards toxic cyanogen gas: a DFT study. Mater Res Express 4:045011CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  41. 41.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  42. 42.
    Frisch M, Trucks G, Schlegel H B, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision a. 02, gaussian Inc., Wallingford, CT 200Google Scholar
  43. 43.
    Lu YH, Zhou M, Zhang C, Feng YP (2009) Metal-embedded graphene: a possible catalyst with high activity. J Phys Chem C 47:20156–20160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesArak UniversityArakIran
  2. 2.Institute of Nanosciences and NanotechnologyArak UniversityArakIran

Personalised recommendations