Comparison of non-covalent interactions and spectral properties in 1-methyl-3-methylthio-5-phenyl-1,2,4-triazinium mono- and tetraiodide crystals

  • Irina D. Yushina
  • Boris V. Rudakov
  • Adam I. Stash
  • Ekaterina V. BartashevichEmail author
Original Research


The reaction of 1-methyl-3-methylthio-5-phenyl-1,2,4-triazinium (MTPT) iodide with diiodine in a solution leads to monoiodide crystal structure that in excess of iodine gives the unusual tetraiodide anion with two central iodine atoms in disorder. The bonding within the anion has been characterized as I…I2…I; the existence of the bound iodine molecule inside has been proven by the characteristic band in experimental and calculated Raman spectra. Non-covalent interactions of MTPT in considered crystal structures are different. Monoiodide anion as a strong electron donor allows the formation of the S…I chalcogen bonds that are absent in tetraiodide structure. The features of halogen bonds within the I42– anion are also performed.


1,2,4-Triazine 1,2,4-Triaziniumoligoiodide Tetraiodide Halogen bond Chalcogen bond 


Funding information

The work was financially supported by the Ministry of Education and Science of the Russian Federation, grant 4.1157.2017/4.6, and by the Government of the Russian Federation, Act 211, contract No. 02.A03.21.0011.

Compliance with ethical standards

Ethical statement

All ethical guidelines have been adhered to.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1372_MOESM1_ESM.cif (888 kb)
ESM 1 (CIF 888 kb)
11224_2019_1372_MOESM2_ESM.fcf (535 kb)
ESM 2 (FCF 534 kb)
11224_2019_1372_MOESM3_ESM.cif (892 kb)
ESM 3 (CIF 892 kb)
11224_2019_1372_MOESM4_ESM.fcf (312 kb)
ESM 4 (FCF 311 kb)


  1. 1.
    Holla S, Gonsalves R, Sooryanarayana R, Shenoy S, Gopalakrishna H (2001) Synthesis of some new biologically active bis-(thiadiazolotriazines) and bis-(thiadiazolotriazinyl) alkanes. Il Farmaco 56:899–903CrossRefGoogle Scholar
  2. 2.
    Karczmarzyk Z, Wysocki W, Urbańczyk-Lipkowska Z, KalickP BA, Bielawski K, Ławecka J (2015) Synthetic approaches for sulfur derivatives containing 1,2,4-triazine moiety: their activity for in vitro screening towards two human cancer cell lines. Chem Pharm Bull 63:531–537CrossRefGoogle Scholar
  3. 3.
    Heilman WP, Heilman RD, Scozzie JA, Wayner RJ, Gullo JM, Ariyan ZS (1979) Synthesis and antihypertensive activity of novel 3-hydrazino-5-phenyl-1,2,4-triazines. J Med Chem 22:671–677CrossRefGoogle Scholar
  4. 4.
    Jensen NP, Ager AL, Bliss RA, Canfield CJ, Kotecka BM, Rieckmann KH, Jacobus DP (2001) Phenoxypropoxybiguanides, prodrugs of DHFR−inhibiting diaminotriazineantimalarials. J Med Chem 44:3925–3931CrossRefGoogle Scholar
  5. 5.
    Baliani A, Bueno GJ, Mhairi LS, YardleyV BR, BarrettMP GIH (2005) Design and synthesis of a series of melamine-based nitroheterocycles with activity against trypanosomatidparasites. J Med Chem 48:5570–5579CrossRefGoogle Scholar
  6. 6.
    Mullick P, Khan SA, Begum T, Verma S, Kaushik D, Alam O (2009) Synthesis of 1,2,4-triazine derivatives as potential anti-anxiety and anti-inflammatory agents. Acta Pol Pharm 66:379–385Google Scholar
  7. 7.
    Weinreb SM, Schaumann E (2004) Science of synthesis: hetarenes and related ring systems: category 2. ThiemeVerlagsgruppe, StuttgartGoogle Scholar
  8. 8.
    Nassir GS, Shirzadi AA, Filkowski M (2008) Publication bias and the pharmaceutical industry: the case of lamotrigine in bipolar disorder. Medscape J Med 10:211Google Scholar
  9. 9.
    Medford N, Sierra M, Baker D, David AS (2005) Understanding and treating depersonalisation disorder. Adv Psychiatr Treat 11:92–100CrossRefGoogle Scholar
  10. 10.
    Irannejad H, Amini M, Khodagholi F, Ansari N, Khoramian TS, Sharifzadeh M, Shafiee A (2010) Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents. Bioorg Med Chem 18:4224–4230CrossRefGoogle Scholar
  11. 11.
    Chupakhin ON, Rudakov BV, Alexeev SG, Charushin VN, Chertkov VA (1990) Unusual dimerization of 1-ethyl-1,2,4-triazinium salts into 4a,4b,9,10-tetrahydro-1,3,6,8,8a,10a-hexaazaphenantrenes. Tetrahedron Lett 31:7665–7668CrossRefGoogle Scholar
  12. 12.
    Chupakhin ON, Rudakov BV, McDermott P, Alexeev SG, Charushin VN, Hegarty F (1995) An unusual easy oxidative dequaternisation of N-Alkyl-1,2,4-triazinium salts. Mend Commun 5:104–105CrossRefGoogle Scholar
  13. 13.
    Maharramov AM, Mahmudov KT, Kopylovich MN, Pombeiro AJL (eds) (2016) Non-covalent interactions in the synthesis and design of new compounds. John Wiley & Sons, Inc, HobokenGoogle Scholar
  14. 14.
    Punyani S, Narayana P, Singh H, Vasudevan P (2006) Iodine based water disinfection: a review. J SciInd Res 65:116–120Google Scholar
  15. 15.
    McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179CrossRefGoogle Scholar
  16. 16.
    Dingli D, Kemp BJ, O’Connor MK, Morris JC, Russell SJ, Lowe VJ (2005) Combined I-124 positron emission tomography/computed tomography imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumor. Mol Imaging Biol 8:16–23CrossRefGoogle Scholar
  17. 17.
    Bartashevich EV, Grigoreva EA, Yushina ID, Bulatova LM, Tsirelson VG (2017) Modern level for properties prediction of iodine-containing organic compounds: the halogen bonds formed by iodine. Russ Chem Bull 66:1345–1356CrossRefGoogle Scholar
  18. 18.
    Yu H, Yan L, He Y, Meng H, Huang W (2017) An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt. Chem Commun 53:432–435CrossRefGoogle Scholar
  19. 19.
    Yin Z, Wang Q-X, Zeng M-H (2012) Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework. J Am Chem Soc 134:4857–4863CrossRefGoogle Scholar
  20. 20.
    Svensson PH, Kloo L (2003) Synthesis, structure and bonding in polyiodide and metal Iodide−Iodine systems. Chem Rev 103:1649–1684CrossRefGoogle Scholar
  21. 21.
    Bartashevich EV, Mukhitdinova SE, Yushina ID, Tsirelson VG (2019) Electronic criterion for categorizing the chalcogen and halogen bonds: sulfur–iodine interactions in crystals. Acta Crystallogr B 75:117–126CrossRefGoogle Scholar
  22. 22.
    Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58:4383–4438CrossRefGoogle Scholar
  23. 23.
    Shibaeva RP, Yagubskii EB (2004) Molecular conductors and superconductors based on trihalides of BEDT-TTF and some of its analogues. Chem Rev 104:5347–5378CrossRefGoogle Scholar
  24. 24.
    Bol’shakov OI, Yushina ID, Bartashevich EV, Nelyubina YV, Aysin RR, Rakitin OA (2017) Asymmetric triiodide-diiodine interactions in the crystal of (Z)-4-chloro-5-((2-((4-chloro-5H-1,2,3-dithiazol-5-ylidene)amino)phenyl)amino)-1,2,3-dithiazol-1-ium oligoiodide. Struct Chem 28:1927–1934CrossRefGoogle Scholar
  25. 25.
    Bartashevich EV, Batalov VI, Yushina ID, Stash AI, Chen YS (2016) Nontypical iodine–halogen bonds in the crystal structure of (3E)-8-chloro-3-iodomethylidene-2,3-dihydro-1,4-oxazino[2,3,4-ij]quinolin-4-ium triiodide. Acta Crystallogr C 72:341–345CrossRefGoogle Scholar
  26. 26.
    Bartashevich EV, Yushina ID, Vershinina EA, Slepukhin PA, Kim DG (2014) Complex structure tri- and polyiodides of iodocyclization products of 2-allylthioquinoline. J Struct Chem 55:112–119CrossRefGoogle Scholar
  27. 27.
    Reiss GJ, Megen M (2012) Synthesis, structure and spectroscopy of a new polyiodide in the α,ω-Diazaniumalkane Iodide/Iodine system. Z Naturforsch 67b:447–451CrossRefGoogle Scholar
  28. 28.
    GrześkiewiczAM KM (2018) Factors affecting charge transfer in tetraiodidedianions. New J Chem 42:10661–10669CrossRefGoogle Scholar
  29. 29.
    Manca G, Ienco A, Mealli C (2012) Factors controlling asymmetrization of the simplest linear I3 and I4 2–polyiodides with implications for the nature of halogen bonding. Cryst Growth Des 12:1762–1771CrossRefGoogle Scholar
  30. 30.
    Węcławik M, Szklarz P, Medycki W, Janicki R, Piecha-Bisiorek A, Zieliński P, Jakubas R (2015) Unprecedented transformation of [I- ·I3 -]to [I4 2-] polyiodides in the solid state: structure, phase transitions and characterization of dipyrazoliumiodide triiodide. Dalton Trans 44:18447–18458CrossRefGoogle Scholar
  31. 31.
    Abate A, Brischetto M, Cavallo G, Lahtinen M, Metrangolo P, Pilati T, Radice S, Resnati G, Rissanene K, Terraneo G (2010) Dimensional encapsulation of I-I2I- in an organic salt crystal matrix. Chem Commun 46:2724–2726CrossRefGoogle Scholar
  32. 32.
    APEX II software package, Bruker (2013) SAINT, SADABS, APEX2 and SHELXTL. AXS Inc., MadisonGoogle Scholar
  33. 33.
    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8Google Scholar
  34. 34.
    Dovesi R, Erba A, Orlando R, Zicovich-Wilson CM, Civalleri B, Maschio L, Rerat M, Casassa S, Baima J, Salustro S, Kirtman B (2018) Quantum-mechanical condensed matter simulations with CRYSTAL. WIREs Comput Mol Sci 8:e1360CrossRefGoogle Scholar
  35. 35.
    Peintinger MF, Oliveira DV, Bredow T (2013) Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J Comput Chem 34:451–459CrossRefGoogle Scholar
  36. 36.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functionalcalculations. Can J Chem 70:560–571CrossRefGoogle Scholar
  37. 37.
    Maschio L, Kirtman B, Rerat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. JChemPhys 139:164101Google Scholar
  38. 38.
    Becke A, Edgecombe K (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397CrossRefGoogle Scholar
  39. 39.
    Gatti C, Casassa S (2013) TOPOND14 User’s Manual. CNR-ISTM of Milano, MilanoGoogle Scholar
  40. 40.
    Pan F, Puttreddy R, Rissanen K, Englert U (2015) Synthesis of tetrahalidedianionsdirected by crystal engineering. Cryst Eng Commun 17:6641–6645CrossRefGoogle Scholar
  41. 41.
    Wecławik M, Gagor A, Piecha A, Jakubas R, Medycki W (2013) Synthesis, crystal structure and phase transitions of a series of imidazolium iodides. Cryst Eng Commun 15:5633CrossRefGoogle Scholar
  42. 42.
    Bartashevich EV, Stash AI, Batalov VI, Yushina ID, Drebushchak TN, Boldyreva EV, Tsirelson VG (2016) The staple role of hydrogen and halogen bonds in crystalline (E)-8-((2,3-diiodo-4-(quinolin-8-ylthio)but-2-en-1-yl)thio)quinolin-1-ium triiodide. Struct Chem 27:1553–1560CrossRefGoogle Scholar
  43. 43.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J Chem Phys 117:5529CrossRefGoogle Scholar
  44. 44.
    Niepçtter B, Herbst-Irmer R, Kratzert D, Samuel PP, Mondal KC, Roesky HW, Jerabek P, Frenking G, Stalke D (2014) Experimental charge density study of a silylone. Angew Chem Int Ed 53:2766CrossRefGoogle Scholar
  45. 45.
    Amezaga NJM, Pamies SC, Peruchena NM, Sosa GL (2010) Halogen bonding: a study based on the electronic charge density. J Phys Chem A 114:552CrossRefGoogle Scholar
  46. 46.
    Liu S, Rong C, Lu T, Hu H (2018) Identifying strong covalent interactions with Pauli energy. J Phys Chem A 122:3087CrossRefGoogle Scholar
  47. 47.
    Bartashevich EV, Nasibullina SE, Tsirelson VG (2015) Electron delocalization indices as criteria for the identification of strong halogen bonds of iodine. J Struct Chem 56:1223–1225CrossRefGoogle Scholar
  48. 48.
    Yushina ID, Pikhulya DG, Bartashevich EV (2019) The features of iodine loss at high temperatures: the case study of crystalline thiazoloquinoliniumpolyiodides. J Therm Anal Calorim in printGoogle Scholar
  49. 49.
    Yushina ID, Kolesov BA, Bartashevich EV (2015) Raman spectroscopy study of new thia- and oxazinoquinoliniumtriodides. New J Chem 39:6163–6170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Irina D. Yushina
    • 1
  • Boris V. Rudakov
    • 1
  • Adam I. Stash
    • 1
    • 2
    • 3
  • Ekaterina V. Bartashevich
    • 1
    Email author
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.L.Ya. Karpov Institute of Physical ChemistryMoscowRussia
  3. 3.A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of ScienceMoscowRussia

Personalised recommendations