Theoretical studies of conformational analysis and intramolecular dynamic phenomena

  • Ibon Alkorta
  • José ElgueroEmail author
Review Article


This review reports our computational studies of a variety of topics related to conformational analyses and intramolecular dynamic phenomena. Single and double bonds, open and ring systems, and chiral molecules devoid of chiral centers (atropisomers, propellers, scorpionates, helicenes, truxenes) will be reported. Studies that followed our contributions and that are related to them will also be cited. Some curious aspects such as the absence of influence of static fields on absolute chirality, the extension of CIP rules to supramolecular systems, libration of phenyl groups, and the barrier of 1,16-dehydro[6]helicene will be discussed.


Atranes Atropisomerism Carbohydrates Chirality Helicenes Propellers Scorpionates 



We thank the reviewer for commentaries that led to an improvement of our manuscript.

Funding information

This work was carried out with financial support from the Ministerio de Ciencia, Innovación y Universidades (Project PGC2018-094644-B-C22) and Dirección General de Investigación en Innovación de la Comunidad de Madrid (PS2018/EMT-4329 AIRTEC-CM). Thanks are also given to the CTI (CSIC) for their continued computational support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Elguero J, Silva AMS, Tomé AC (2011) Modern heterocyclic chemistry. In: Alvarez-Builla J, Vaquero JJ, Barluenga J (eds) Five-membered heterocycles: 1,2-Azoles, Part 1, Pyrazoles. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Foces-Foces C, Echevarría A, Jagerovic N, Alkorta I, Elguero J, Langer U, Klein O, Minguet-Bonvehí M, Limbach HH (2001) A solid-state NMR, X-ray diffraction, an ab initio computational study of hydrogen-bond structure and dynamics of pyrazole-4-carboxylic acid chains. J Am Chem Soc 123:7898–7906CrossRefPubMedGoogle Scholar
  3. 3.
    Aguilar-Parrilla F, Cativiela C, De Villegas MDD, Elguero J, Foces-Foces C, Laureiro JIG, Cano FH, Limbach HH, Smith JAS, Toiron C (1992) The tautomerism of 3(5)-phenylpyrazoles: an experimental (1H, 13C, 15N NMR and X-ray crystallography) study. J Chem Soc Perkin Trans 2:1737–1742CrossRefGoogle Scholar
  4. 4.
    Alkorta I, Elguero J (2016) A computational study of azaphospholes: anions and neutral tautomers. Struct Chem 27:1531–1542CrossRefGoogle Scholar
  5. 5.
    Alkorta I, Sánchez-Sanz G, Elguero J (2012) Influence of hydrogen bonds on the P···P pnicogen bond. J Chem Theor Comput 8:2320–2327CrossRefGoogle Scholar
  6. 6.
    Brea O, Alkorta I, Mó O, Yáñez M, Elguero J, Corral I (2016) Exergonic and spontaneous production of radicals through beryllium bonds. Angew Chem Int Ed 55:8736–8739CrossRefGoogle Scholar
  7. 7.
    López C, Claramunt RM, Trofimeno S, Elguero J (1993) A 13C NMR spectroscopy study of the structure of N-H pyrazoles and indazoles. Can J Chem 71:678–684CrossRefGoogle Scholar
  8. 8.
    Alkorta I, Elguero J (2003) GIAO calculations of chemical shifts in heterocyclic compounds. Struct Chem 14:377–389CrossRefGoogle Scholar
  9. 9.
    Del Bene JA, Perera SA, Bartlett RJ, Elguero J, Alkorta C, Alajarín M, Bautista D (2002) 3h J(15N-31P) Spin-spin coupling constants across N-H···O-P hydrogen bonds. J Am Chem Soc 124:6393–6397CrossRefPubMedGoogle Scholar
  10. 10.
    Alkorta I, Elguero J, Del Bene JE, Mó O, Yáñez M (2010) New insights into factors influencing B-N bonding in X:BH3–nFn and X:BH3–nCln for X = N2, HCN, LiCN, H2CNH, NF3, NH3 and n = 0–3: the importance of deformation. Chem Eur J 16:11897–11905CrossRefPubMedGoogle Scholar
  11. 11.
    Berthou J, Elguero J, Rérat R (1970) Raffinement de la structure cristalline du pyrazole. Acta Crystallogr Sect B 26:1880–1881CrossRefGoogle Scholar
  12. 12.
    Clarkson GJ, Farrán MA, Claramunt RM, Alkorta I, Elguero J (2019) The structure of the anti-aging agent J147 used for treating Alzheimer’s disease. Acta Crystallogr Sect C 75:271276CrossRefGoogle Scholar
  13. 13.
    Alkorta I, Blanco F, Elguero J (2008) Proton transfer in C-halogen pyrazole cyclamers. A theoretical study (2008). Struct Chem 19:181–198CrossRefGoogle Scholar
  14. 14.
    Eliel EL, Wilen SH (with a contribution of LN Mander) (1994) Stereochemistry of organic compounds. John Wiley & Sons, New YorkGoogle Scholar
  15. 15.
    Alkorta I, Elguero J (1998) Dissociation energies and rotational barriers about CC single, double, and triple bonds: a hybrid HF-DFT approach (Becke3LYP/6-311++G**). Struct Chem 9:59–63CrossRefGoogle Scholar
  16. 16.
    Wu LC, Hsu CW, Chuang YCm Lee GH, Tsai YC, Wang Y (2011) Bond characterization on a Cr-Cr quintuple bond: a combined experimental and theoretical study. J Phys Chem A 115:12602–12615CrossRefPubMedGoogle Scholar
  17. 17.
    Alkorta I, Wentrup C, Elguero J (2002) A theoretical study of the origin of rotational barriers in push-pull ethylenes. J Mol Struct (THEOCHEM) 585:27–34CrossRefGoogle Scholar
  18. 18.
    Kostenko A, Tumanskii B, Karni M, Inoue S, Ichinoe M, Sekiguchi A, Apeloig Y (2015) Observation of a thermally accessible triplet state resulting from rotation around a main-group π bond. Angew Chem Int Ed 54:12144–12148CrossRefGoogle Scholar
  19. 19.
    Feringa BL (2001) In control of motion: from molecular switches to molecular rotors. Acc Chem Res 34:504–513CrossRefPubMedGoogle Scholar
  20. 20.
    Sánchez-Sanz G, Alkorta I, Elguero J (2011) Isomerization barriers in bis (4H-thiopyran) and in bithioxanthenes. Tetrahedron 67:7316–7320CrossRefGoogle Scholar
  21. 21.
    Langa F, de la Cruz P, Delgado JL, Haley MM, Shirtcliff L, Alkorta I, Elguero J (2004) The structure of p-nitrophenylhydrazones of aldehydes: the case of the p-nitrophenylhydrazone of 2-diethylamino-5-methoxy-2H-indazole-3-carboxaldehyde. J Mol Struct 699:17–21CrossRefGoogle Scholar
  22. 22.
    Arnal E, Elguero J, Jacquier R, Marzin C, Wilde J (1965) Etude RMN d’azines. Bull Soc Chim Fr 877:878Google Scholar
  23. 23.
    Tabacik V, Pellegrin V, Elguero J, Jacquier R, Marzin C (1971) Symétrie et configuration de l’acétaldazine. Etude de spectres de vibration et de vibration-rotation. J Mol Struct 8:173–193CrossRefGoogle Scholar
  24. 24.
    Elguero J, Jacquier R, Berthou J (1973) Etude comparative de la stéréochimie de quatre cinnamaldazines a l’état solide (rayons X) et en solution (UV, IR, RMN). Bull Soc Chim Fr 3303–3306Google Scholar
  25. 25.
    Safari J, Gandomi-Ravandi S (2014) Structure, synthesis and application of azines: a historical perspective. RSC Adv 4:46224–46249CrossRefGoogle Scholar
  26. 26.
    Alkorta I, Blanco F, Elguero J (2008) Computational studies of the structure of aldazines and ketazines. Part 1. Simple compounds. Arkivoc vii:48–56Google Scholar
  27. 27.
    Blanco F, Alkorta I, Elguero J (2007) Computational studies of the structure of aldazines and ketazines. Part 2. Halogen and α,β-unsaturated derivatives. J Mol Struct (THEOCHEM) 847:25–31CrossRefGoogle Scholar
  28. 28.
    Silva AMS, Silva VLM, Claramunt RM, Santa María D, Ferraro MB, Reviriego F, Alkorta I, Elguero J (2013) The structures of two aldazines: [1,1'-(1E,1′E)-hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)dinaphthalen-2-ol] (Lumogen) and 2,2′-(1E,1′E)-hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)diphenol (salicylaldazine) in the solid state and in solution. Magn Reson Chem 51:530–540CrossRefPubMedGoogle Scholar
  29. 29.
    Pinto J, Silva VLM, Silva AMS, Claramunt RM, Sanz D, Torralba MC, Torres MR, Reviriego F, Alkorta I, Elguero J (2013) The structure of azines derived from C-formyl-1H-imidazoles in solution and in the solid state: tautomerism, configurational and conformational studies. Magn Reson Chem 51:203–221CrossRefPubMedGoogle Scholar
  30. 30.
    Blanco F, Alkorta I, Elguero J (2009) Barriers about double carbon-nitrogen bond in imine derivatives (aldimines, oximes, hydrazones, azines). Croat Chem Acta 82:173–183Google Scholar
  31. 31.
    Gentili P, Nardi M, Antignano I, Cambise P, D’Abramo M, D’Acunzo F, Pinna A, Ussia E (2018) 2-(Hydroxyimino)aldehydes: photo- and physicochemical properties of a versatile functional group for monomer design. Chem Eur J 24:7683–7694CrossRefPubMedGoogle Scholar
  32. 32.
    López-Tarifa P, Sánchez-Sanz G, Alkorta I, Elguero J, Sanz D, Perona A, Claramunt RM (2012) The tautomeric structures of 3(5),3'(5')-azopyrazole [(E)-1,2-di(1H-pyrazol-3(5)-yl)diazene)]: The combined use of NMR and electronic spectroscopies with DFT calculations. J Mol Struct 1015:138–146Google Scholar
  33. 33.
    Alkorta I, Elguero J, Cintas P (2015) Adding only one priority rule allows extending CIP rules to supramolecular systems. Chirality 27:339–343CrossRefPubMedGoogle Scholar
  34. 34.
    Elguero J (2016) Is it possible to extend the Cahn-Ingold-Prelog priority rules to supramolecular structures and coordination compounds using lone pairs? Chem Int 38:30–31CrossRefGoogle Scholar
  35. 35.
    Alkorta I, Elguero J (2002) Molecular versus supramolecular chemistry: the rotational barriers about covalent bonds and hydrogen bonds. Struct Chem 13:97–98CrossRefGoogle Scholar
  36. 36.
    Bouchet P, Elguero J, Jacquier R, Pereillo JM (1972) Etude par RMN de la configuration d’hydrazides. Bull Soc Chim Fr 2264–2272Google Scholar
  37. 37.
    Bouchet P, Coquelet C, Elguero J (1975) Vicinal interproton coupling through two heteroatoms. II. Coupling 3 J(H-N-O-H) occurring in N-nitrophenylhydroxylamines. Org Magn Reson 7:247–248CrossRefGoogle Scholar
  38. 38.
    Elguero J, Johnson BL, Pereillo JM, Pouzard G, Rajzmann M, Randall EW (1977) Constantes de couplage vicinales a travers deux heteroatomes. III. Calculs theoriques et mesures experimentales dans les hydrazines enrichies en 15N. Org Magn Reson 9:145–147CrossRefGoogle Scholar
  39. 39.
    Alkorta I, Elguero J (2004) Karplus-type relationships between scalar coupling constants: 3 J HH molecular versus 4h J HH supramolecular coupling constants. Theor Chem Accounts 111:31–35CrossRefGoogle Scholar
  40. 40.
    Alkorta I, Elguero J (2003) The influence of chain elongation on Karplus-type relationships: a DFT study of scalar coupling constants in polyacetylene derivatives. Org Biomol Chem 1:585–587CrossRefPubMedGoogle Scholar
  41. 41.
    Ambati J, Rankin SE (2010) Determination of 29Si- 1H spin-spin coupling constants in organoalkoxysilanes with nontrivial scalar coupling patterns. J Phys Chem A 114:12613–12621CrossRefPubMedGoogle Scholar
  42. 42.
    Provasi FP, Aucar GA, Sauer SPA (2004) Large long-range F-F indirect spin-spin coupling constants. prediction of measurable F-F couplings over a few nanometers. J Phys Chem A 108:5393–5398CrossRefGoogle Scholar
  43. 43.
    Zborowski K, Alkorta I, Elguero J (2006) Effect of dimerization and racemization processes on the electron density and the optical rotatory power of hydrogen peroxide derivatives. J Phys Chem A 110:7247–7252CrossRefPubMedGoogle Scholar
  44. 44.
    Alkorta I, Elguero J (2002) Discrimination of hydrogen-bonded complexes with axial chirality. J Chem Phys 117:6453–6568CrossRefGoogle Scholar
  45. 45.
    Sánchez M, Ferraro MB, Alkorta I, Elguero J, Sauer SPA (2008) Atomic partition of the optical rotatory power of methylhydroperoxide. J Chem Phys 128:064318CrossRefPubMedGoogle Scholar
  46. 46.
    Sánchez M, Alkorta I, Ferraro MB, Elguero J, Sauer SPA (2014) On the transferability of atomic contributions to the optical rotatory power of hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide. Mol Phys 112:1624–1632CrossRefGoogle Scholar
  47. 47.
    Alkorta I, Elguero J, Provasi PF, Ferraro MB (2011) Theoretical study of the 1:1 and 2:1 (homo- and heterochiral) complexes of XOOX' (X, X' = H, CH3) with Lithium Cation. J Phys Chem A 115:7805–7810CrossRefPubMedGoogle Scholar
  48. 48.
    Alkorta I, Elguero J, Provasi PF, Pagola GI, Ferraro MB (2011) Electric field effects on nuclear magnetic shielding on the 1:1 and 2:1 (homo- and heterochiral) complexes of XOOX' (X, X' = H, CH3) with lithium cation and their chiral discrimination. J Chem Phys 135:104e116CrossRefGoogle Scholar
  49. 49.
    Sánchez-Sanz G, Alkorta I, Elguero J (2011) Theoretical study of HXYH dimers (X, Y = O, S, Se). Hydrogen bonding and chalcogen-chalcogen interactions. Mol Phys 109:2543–2552CrossRefGoogle Scholar
  50. 50.
    Azofra LM, Alkorta I, Elguero J (2014) Chiral discrimination in dimers of diphosphines PH2–PH2 and PH2–PHF. ChemPhysChem 15:3663–3670CrossRefPubMedGoogle Scholar
  51. 51.
    Alkorta I, Elguero J (2010) A theoretical study of the stationary structures of the methane surface with special emphasis on NMR properties. Chem Phys Lett 489:35–38CrossRefGoogle Scholar
  52. 52.
    Jackowski K, Makulski W (2011) 13C shielding scale for MAS NMR spectroscopy. Magn Reson Chem 49:600–602PubMedGoogle Scholar
  53. 53.
    Nieto CI, Cabildo P, García MA, Claramunt RM, Elguero J, Alkorta I (2018) Libration of phenyl groups detected by VT-SSNMR: comparison with X-ray crystallography. Magn Reson Chem 56:1083–1088CrossRefPubMedGoogle Scholar
  54. 54.
    Quesada-Moreno MM, Cruz-Cabeza AJ, Avilés-Moreno JR, Cabildo P, Claramunt RM, Alkorta I, Elguero J, Zúñiga FJ, López-González JJ (2017) The curious case of 2-propyl-1H -benzimidazole in the solid state: an experimental and theoretical study. J Phys Chem A 121:5665–5674CrossRefPubMedGoogle Scholar
  55. 55.
    Alkorta I, Elguero J (2019) The strange case of achiral compounds which were reported to always crystallize in the same chiral group. Struct Chem 30:633–636Google Scholar
  56. 56.
    Pérez-Torralba M, Claramunt RM, Alkorta I, Elguero J (2007) Double addition of azoles to glyoxal: characterization of the bis-adducts and theoretical study of their structure. Arkivoc xii:55–66Google Scholar
  57. 57.
    García-Frutos EM, Gómez-Lor B, Monge A, Gutiérrez-Puebla E, Alkorta I, Elguero J (2008) Synthesis and preferred all-syn conformation of C 3-symmetrical N-(Hetero)arylmethyl triindoles. Chem Eur J 14:8555–8561CrossRefPubMedGoogle Scholar
  58. 58.
    García-Pérez D, López C, Claramunt RM, Alkorta I, Elguero J (2017) 19F-NMR diastereotopic signals in two N -CHF2 derivatives of (4S,7R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-2H -indazole. Molecules 22:2003CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sanz D, Claramunt RM, Roussel C, Alkorta I, Elguero J (2018) The structure of N-benzylazoles from pyrrole to carbazole: geometries and energies. Indian J Heterocycl Chem 28:1–9Google Scholar
  60. 60.
    Holzer W, Castoldi L, Kyselova V, Sanz D, Claramunt RM, Torralba MC, Alkorta I, Elguero J (2019) Multinuclear NMR spectra and GIAO/DFT calculations of N-benzylazoles and N-benzylbenzazoles. Struct Chem in press.
  61. 61.
    Alkorta I, Elguero J (2014) A theoretical study of the structure and protonation of Palbociclib (PD 0332991). J Mol Struct 1056-1057:209–215CrossRefGoogle Scholar
  62. 62.
    Chen FQ, Liu CX, Zhang J, Xu WF, Zhang YJ (2018) Progress of CDK4/6 inhibitor Palbociclib in the treatment of cancer. Anti Cancer Agents Med Chem 18:1241–1251CrossRefGoogle Scholar
  63. 63.
    Nieto CI, Cabildo P, Claramunt RM, Cornago P, Sanz D, Torralba MC, Torres MR, Ferraro MB, Alkorta I, Marín-Luna M, Elguero J (2016) The structure of β-diketones related to curcumin determined by X-ray crystallography, NMR (solution and solid state) and theoretical calculations. Struct Chem 27:705–730CrossRefGoogle Scholar
  64. 64.
    Alkorta I, Elguero J (2011) Conformational analysis of N,N'-dinaphthyl heterocyclic carbenes: imidazol-2-ylidenes and imidazolin-2-ylidenes. Struct Chem 22:1087–1094CrossRefGoogle Scholar
  65. 65.
    Risso V, Farran D, Javierre G, Naubron JV, Giorgi M, Piras P, Jean M, Vanthuyne N, Fruttero LD, Roussel C (2018) Atropisomerism in a 10-membered ring with multiple chirality axes: (3Z,9Z)-1,2,5,8-dithiadiazecine-6,7(5H,8H)-dione series. J Organomet Chem 83:7566–7573CrossRefGoogle Scholar
  66. 66.
    Alkorta I, Elguero J (2004) A GIAO/DFT study of 1H, 13C and 15N shieldings in amines and its relevance in conformational analysis. Magn Reson Chem 42:955–961CrossRefPubMedGoogle Scholar
  67. 67.
    Alkorta I, Elguero J, Eric E (2004) Paradigms and paradoxes: the position of the lone pair in amines: a comparison between Bader’s AIM approach and pure geometrical considerations. Struct Chem 15:599–604CrossRefGoogle Scholar
  68. 68.
    Creve S, Nguyen MT (1998) Inversion processes in phosphines and their radical cations: when is a pseudo-Jahn-Teller effect operative. J Phys Chem A 102:6549–6557CrossRefGoogle Scholar
  69. 69.
    Del Bene JE, Sánchez-Sanz G, Alkorta I, Elguero J (2012) Homo- and heterochiral dimers (PHFX)2, X = Cl, CN, CH3, NC: To what extent do they differ? Chem Phys Lett 538:14–18CrossRefGoogle Scholar
  70. 70.
    Al-Otaibi JS, El Gogary TM, El-Demerdash SH (2018) Umbrella inversion and structure of phosphorus-containing compounds: a quantum chemical study. J Theor Comput Chem 17:1850042CrossRefGoogle Scholar
  71. 71.
    Mó O, de Paz JLG, Yáñez M, Alkorta I, Elguero J, Goya P, Rozas I (1989) A molecular orbital study of the conformation (inversion and rotational barriers) and electronic properties of sulfamide. Can J Chem 67:2227–2236CrossRefGoogle Scholar
  72. 72.
    Sanz D, Claramunt RM, Alkorta I, Sánchez-Sanz G, Elguero J (2012) The structure of Glibenclamide in the solid state. Magn Reson Chem 50:246–255CrossRefPubMedGoogle Scholar
  73. 73.
    Alkorta I, Alvarado M, Elguero J, García-Granda S, Goya P, Jimeno ML, Menéndez-Taboada L (2009) The structure of Rimonabant in the solid state and in solution: an experimental and theoretical study. Eur J Med Chem 44:1864–1869CrossRefPubMedGoogle Scholar
  74. 74.
    Hansen E, Lime E, Norrby PO, Wiest O (2016) Anomeric effects in sulfamides. J Phys Chem A 120:3677–3682CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yonashiro H, Higashi K, Morikawa C, Ueda K, Itoh T, Ito M, Masu H, Noguch S, Moribe K (2018) Morphological and physicochemical evaluation of two distinct Glibenclamide/ hypromellose amorphous nanoparticles prepared by the antisolvent method. Mol Pharm 15:1587–1597CrossRefPubMedGoogle Scholar
  76. 76.
    Scott CE, Ahn KH, Graf ST, Goddard WA, Kendall DA, Abrol R (2016) Computational prediction and biochemical analyses of new inverse agonists for the CB1 receptor. J Chem Inf Model 56:201–212CrossRefPubMedGoogle Scholar
  77. 77.
    Marín-Luna M, Alkorta I, Elguero J (2015) Theoretical study of the geometrical, energetic and NMR properties of atranes. J Organomet Chem 794:206–215CrossRefGoogle Scholar
  78. 78.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2017) Modulation of in:out and out:out conformations in [X,X',X"] phosphatranes by Lewis acids. Phys Chem Chem Phys 19:20647–20656Google Scholar
  79. 79.
    Matthews AD, Gravalis GM, Schley ND, Johnson MW (2018) Synthesis, structure, and reactivity of palladium proazaphosphatrane complexes invoked in C-N cross-coupling. Organomet 37:3073–3078CrossRefGoogle Scholar
  80. 80.
    Lin YC, Gihula JC, Rodosevich AT (2018) Nontrigonal constraint enhances 1,2-addition reactivity of phosphazenes. Chem Sci 9:4338–4347CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Azofra LM, Alkorta I, Elguero J, Popelier P (2012) Conformational study of the open-chain and furanose structures of D-erythrose and D-threose. Carbohydr Res 358:96–105CrossRefPubMedGoogle Scholar
  82. 82.
    Azofra LM, Alkorta I, Elguero J (2013) Theoretical study of the mutarotation of erythrose and threose: acid catalysis. Carbohydr Res 372:1–8CrossRefPubMedGoogle Scholar
  83. 83.
    Quesada-Moreno MM, Azofra LM, Avilés-Moreno JR, Alkorta I, Elguero J, López-González JJ (2013) Conformational preference and chiroptical response of carbohydrates of D-ribose and 2-deoxy-D-ribose in aqueous and solid phases. J Phys Chem B 117:14599–14614CrossRefPubMedGoogle Scholar
  84. 84.
    Azofra LM, Quesada-Moreno MM, Alkorta I, Avilés-Moreno JR, López-González JJ, Elguero J (2014) Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose. New J Chem 38:529–538CrossRefGoogle Scholar
  85. 85.
    Cardamone S, Popelier PLA (2015) Prediction of conformationally dependent atomic multipole moments in carbohydrates. J Comput Chem 36:2361–2373CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Walczak DL, Nowacki A, Trzybinski D, Samaszko-Fiertek J, Mysszka H, Sikorski A, Liberek B (2017) Conformational studies of N-(α-D-glucofuranurono-6,3-lactone) and N-(methyl β-D-glucopyranuronate)-p-nitroanilines. Carbohydr Res 446:85–92CrossRefPubMedGoogle Scholar
  87. 87.
    Wang WJ, Huang F, Sun CZ, Liu JB, Liu JB, Sheng XH, Chen DZ (2017) A theoretical insight into the formation mechanisms of C/N-ribonucleosides with pyrimidine and ribose. Phys Chem Chem Phys 19:10413–10426CrossRefPubMedGoogle Scholar
  88. 88.
    Zeng Z, Bernstein ER (2017) Anionic fructose-related conformational and positional isomers assigned through PES experiments and DFT calculations. Phys Chem Chem Phys 19:23325–23344CrossRefPubMedGoogle Scholar
  89. 89.
    Zeng Z, Bernstein ER (2017) Anionic ribose related species explored through PES experiments, DFT calculations, and through comparison with anionic fructose species. Phys Chem Chem Phys 19:28950–28962CrossRefPubMedGoogle Scholar
  90. 90.
    Szczepaniak M, Moc J (2017) Anomerization reaction of bare and microhydrated D-erythrose via explicitly correlated coupled cluster approach. Two water molecules are optimal. J Comput Chem 38:288–303CrossRefPubMedGoogle Scholar
  91. 91.
    Dudek M, Zajac G, Szafraniek E, Wiercigroch E, Tott S, Malek K, Kaczor A, Baranska M (2019) Raman optical activity and Raman spectroscopy of carbohydrates in solution. Spectrochim Acta Part A 206:597–612CrossRefGoogle Scholar
  92. 92.
    McGill CJ, Westmoreland PR (2019) Monosaccharide isomer interconversions become significant at high temperatures. J Phys Chem A 123:120–131CrossRefPubMedGoogle Scholar
  93. 93.
    Cavero E, Giménez R, Uriel S, Beltrán E, Serrano JL, Alkorta I, Elguero J (2008) The boat conformation in pyrazaboles. A theoretical and experimental study. Cryst Growth Des 8:838–847CrossRefGoogle Scholar
  94. 94.
    Patil Y, Misra R (2017) Tetracyanobutadiene bridged ferrocene and triphenylamine functionalized pyrazabole dimers. J Organomet Chem 840:23–29CrossRefGoogle Scholar
  95. 95.
    Jimeno ML, Benito MT, García Doyagüez E, Claramunt RM, Sanz D, Marín-Luna M, Alkorta I, Elguero J (2016) A theoretical and experimental NMR study of BODIPY 493/503: difluoro{2-[1-(3,5-dimethyl-2H-pyrrol-2-ylidene-N)ethyl]-3,5-dimethyl-1H-pyrrolato-N} boron. Magn Reson Chem 54:684–688CrossRefPubMedGoogle Scholar
  96. 96.
    Alkorta I, Azofra LM, Sánchez-Sanz G, Elguero J (2012) A theoretical study of six-membered rings containing the –N=S–S=N– motif. Struct Chem 23:1245–1252CrossRefGoogle Scholar
  97. 97.
    Alcamí M, Mó O, Yáñez M, Alkorta I, Elguero J (2002) Triaziridine and tetrazetidine vs. cyclic water trimer and tetramer: a computational approach to the relationship between molecular and supramolecular conformational analysis. Phys Chem Chem Phys 4:2123–2129CrossRefGoogle Scholar
  98. 98.
    Peverati R, Siegel JS, Baldridge KK (2009) Ab initio quantum chemical computations of substituent effects on triaziridine strain energy and heat of formation. Phys Chem Chem Phys 11:2387–2395CrossRefPubMedGoogle Scholar
  99. 99.
    Alkorta I, Cativiela C, Elguero J, Gil AM, Jiménez AI (2005) A theoretical study of the influence of nitrogen angular constraints on the properties of amides: rotation/inversion barriers and hydrogen bond accepting abilities of N-formylaziridine and -azirine. New J Chem 29:1450–1453CrossRefGoogle Scholar
  100. 100.
    Szostak M, Aubé J (2013) Chemistry of bridged lactams and related heterocycles. Chem Rev 113:5701–5765CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Chung BKW, White CJ, Scully CCG, Yudin AK (2016) The reactivity and conformational control of cyclic tetrapeptides derived from aziridine-containing amino acids. Chem Sci 7:6662–6668CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Alkorta I, Elguero J, Zborowski K (2007) Chiral recognition in diaziridine clusters and the problem of racemization waves. J Phys Chem A 111:1096–1103CrossRefPubMedGoogle Scholar
  103. 103.
    Lykke L, Halskov KS, Carlsen BD, Chen VX, Jørgensen KA (2013) Catalytic asymmetric diaziridination. J Am Chem Soc 135:4692–4695CrossRefPubMedGoogle Scholar
  104. 104.
    Alkorta I, Picazo O, Elguero J (2006) Chiral recognition of self-complexes of tetrahydro-imidazo[4,5-d]imidazole derivatives: from dimers to heptamers. J Phys Chem A 110:2259–2268CrossRefPubMedGoogle Scholar
  105. 105.
    Figuera N, Alkorta I, García-López MT, González-Muñiz R (1995) 2-Amino-3-oxohexahydro-indolizino[8,7-b]indole-5-carboxylate derivatives as new scaffolds for mimicking β-turn secondary structures. Molecular dynamics and stereoselective synthesis. Tetrahedron 51:7841–7856CrossRefGoogle Scholar
  106. 106.
    García-López MT, Alkorta I, Domínguez MJ, González-Muñiz R, Herranz R, Johansen NL, Madsen K, Thøgersen H, Suzdak P (1995) Constrained C-terminal hexapeptide neurotensin analogues containing a 3-oxoindolizidine skeleton. Lett Pept Sci 1:269–276CrossRefGoogle Scholar
  107. 107.
    Vanthuyne N, Roussel C, Naubron JV, Jagerovic N, Morales Lázaro P, Alkorta I, Elguero J (2011) Determination of the absolute configuration of 1,3,5-triphenyl-4,5-dihydropyrazole enantiomers by a combination of VCD, ECD measurements, and theoretical calculations. Tetrahedron-Asymmetry 22:1120–1124CrossRefGoogle Scholar
  108. 108.
    Rodrigo E, Cid MB, Roussel C, Vanthuyne N, Reviriego F, Alkorta I, Elguero J (2016) A proof of concept: 2-pyrazolines (4,5-dihydro-1H-pyrazoles) can be used as organocatalysts via iminium activation. Lett Org Chem 13:414–419CrossRefGoogle Scholar
  109. 109.
    Pierens GK, Venkatachalam TK, Reutens DC (2017) NMR and DFT investigations of structure of colchicine in various solvents including density functional calculations. Sci Rep 7:5605CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Virgili A, Quesada-Moreno MM, Avilés-Moreno JR, López-González JJ, García MA, Claramunt RM, Torres MR, Jimeno ML, Reviriego F, Alkorta I, Elguero J (2014) A spectroscopic study of colchicine in the solid state and in solution by multinuclear magnetic resonance and vibrational circular dichroism. Helv Chim Acta 97:471–490CrossRefGoogle Scholar
  111. 111.
    Pérez-Torralba M, Claramunt RM, García MA, López C, Torralba MC, Torres MR, Alkorta I, Elguero J (2013) Structure of 1,5-benzodiazepinones in the solid state and in solution: effect of the fluorination in the six-membered ring. Beilstein J Org Chem 9:2158–2167CrossRefGoogle Scholar
  112. 112.
    Martí O, Pérez-Torralba M, García MA, Claramunt RM, Torralba MC, Torres MR, Alkorta I, Elguero J (2016) Static and dynamic properties of fluorinated 4-aryl-1,5-benzodiazepinones. Chem Select 4:861–870Google Scholar
  113. 113.
    Claramunt RM, Alkorta I, Elguero J (2013) A theoretical study of the conformation and dynamic properties of 1,5-benzodiazepines and their derivatives. Comput Theor Chem 1019:108–115CrossRefGoogle Scholar
  114. 114.
    Nieto CI, Andrade A, Sanz D, Claramunt RM, Torralba MC, Torres MR, Alkorta I, Elguero J (2017) Curcumin related 1,4-diazepines: Regioselective synthesis, structure analysis, tautomerism, NMR spectroscopy, X-ray crystallography, density functional theory and GIAO calculations. Chem Select 2:3732–3738Google Scholar
  115. 115.
    Nieto CI, Sanz D, Claramunt RM, Torralba MC, Torres MR, Alkorta I, Elguero J (2018) Molecular structure in the solid state by X-ray crystallography and SSNMR and in solution by NMR of two 1,4-diazepines. J Mol Struct 1155:205–214CrossRefGoogle Scholar
  116. 116.
    Alkorta I, Villar HO, Cachau RE (1993) Conformational analysis of 2,3,6,7-tetrahydroazepines with implications for D1 selective benzazepines. J Comput Chem 14:571–578CrossRefGoogle Scholar
  117. 117.
    Alkorta I, Villar HO, Pérez JJ (1993) Comparison of methods to estimate the free energy of solvation: importance in the modulation of the affinity of 3-benzazepines for the D1 receptor. J Comput Chem 14:620–626CrossRefGoogle Scholar
  118. 118.
    Alkorta I, Suarez ML, Herranz R, González-Muniz R, García-López MT (1996) Similarity study on peptide γ-turn conformation mimetics. J Mol Model 2:16–25Google Scholar
  119. 119.
    Jimeno ML, Akorta I, Elguero J, Anderson JE, Claramunt RM, Lavaldera JL (1998) Conformation of 5,6,11,12-tetrahydrodibenzo[a,e]cyclooctene: an experimental and theoretical NMR study. New J Chem 1079–1083Google Scholar
  120. 120.
    Shen X, Viney C, Johnson ER, Wang C, Lu JQ (2013) Large negative thermal expansion of a polimer driven by a submolecular conformational change. Nat Chem 5:1035–1041CrossRefPubMedGoogle Scholar
  121. 121.
    Wang Z, Huang Y, Guo J, Li Z, Xu J, Lu JQ, Wang C (2018) Design and synthesis of thermal contracting polymer with unique eight-membered carbocycle unit. Macromol 51:1377–1385CrossRefGoogle Scholar
  122. 122.
    Ruiz C, Monge A, Gutiérrez-Puebla E, Alkorta I, Elguero J, López Navarrete JT, Ruiz Delgado MC, Gómez-Lor B (2016) Saddle-shaped cyclic indole tetramers: 3D electroactive molecules. Chem Eur J 22:10651–10660CrossRefPubMedGoogle Scholar
  123. 123.
    Li X, Wang C, Xue Y, Meng C, Lai WY, Huang W (2017) Unexpected one-pot synthesis of diindolotriazatruxene: a planar electron-rich scaffold toward highly π-extended PAHs. Asian J Org Chem 6:1749–1754CrossRefGoogle Scholar
  124. 124.
    Alkorta I, Elguero J (2010) Conformational analysis of dibenzo[a,e]cyclooctadiene and three related heterocycles. Struct Chem 21:885–891CrossRefGoogle Scholar
  125. 125.
    Alkorta I, Elguero J (2016) Theoretical studies on the conformation of large carbocyclic rings. I. 5,6,11,12,17,18-hexahydrotribenzo[a,e,i]cyclododecane (1,2;5,6;9,10-tribenzododeca-1,5,8 -triene). Tetrahedron Lett 57:1838–1842CrossRefGoogle Scholar
  126. 126.
    Cabildo P, Sanz D, Claramunt RM, Bourne SA, Alkorta I, Elguero J (1999) Synthesis and structural studies of some [14]paracyclo-bis-(1,2)pyrazolium- and (1,3)imidazolium-phanes. Tetrahedron 55:2327–2340CrossRefGoogle Scholar
  127. 127.
    Alcalde E, Dinarès I, Mesquida N (2010) Imidazolium-based receptors. Top Heterocycl Chem 24:267–300CrossRefGoogle Scholar
  128. 128.
    Wedlock LE, Barnard PJ, Filipovska A, Skelton BW, Berners-Price SJ, Baker MV (2016) Dinuclear Au(I) N-heter ocyclic carbene complexes derived from unsymmetrical azolium cyclophane salts: otential probes for live cell imaging applications. Dalton Trans 45:12221–12236CrossRefPubMedGoogle Scholar
  129. 129.
    Alkorta I, Elguero J (2011) A computational study of the conformation of heterocyclic systems related to biphenyl. Comput Theor Chem 964:25–31CrossRefGoogle Scholar
  130. 130.
    Alkorta I, Elguero J, Roussel C, Vanthuyne N, Piras P (2012) Atropisomerism and axial chirality in heteroaromatic compounds. Adv Heterocycl Chem 105:1–188CrossRefGoogle Scholar
  131. 131.
    Smyth JE, Butler NM, Keller PA (2015) A twist of nature – the significance of atropisomers in biological systems. Nat Prod Rep 32:1562–1583CrossRefPubMedGoogle Scholar
  132. 132.
    Mendizabal J, de March P, Recasens J, Virgili A, Álvarez-Larena Á, Elguero J, Alkorta I (2012) New C2-symmetry diols accumulating one stereogenic axis and two stereogenic centers. Tetrahedron 68:9645–9651CrossRefGoogle Scholar
  133. 133.
    Alkorta I, Cancedda C, Cocinero EJ, Dávalos JZ, Écija P, Elguero J, González J, Lesarri A, Ramos R, Reviriego F, Roussel C, Uriarte I, Vanthuyne N (2014) Static and dynamic properties of 1,1'-bi-2-naphthol and its conjugated acids and bases. Chem Eur J 20:14816–14825CrossRefPubMedGoogle Scholar
  134. 134.
    Octa-Smolin F, van der Vight F, Yadav R, Bhangu J, Soloviova K, Wölper C, Daniliuc CG, Strassert CA, Somnitz H, Jansen G, Niemeyer J (2018) Synthesis of furan-annelated BINOL derivatives: acid-catalyzed cyclization induces partial racemization. J Organomet Chem 83:14568–14587CrossRefGoogle Scholar
  135. 135.
    Alkorta I, Elguero J, Font A, Galcera J, Mata I, Molins E, Virgili A (2014) An experimental and theoretical study of Lamotrogine in its neutral and protonated forms: evidence of Lamotrogine enantiomers. Tetrahedron 70:2784–2795CrossRefGoogle Scholar
  136. 136.
    Zonja B, Delgado A, Abad JL, Pérez S, Barceló D (2016) Abiotic amidine and guanidine hydrolysis of lamotrigine-N2-glucuronide and related compounds in wastewater: the role of pH and N2-substitution on reaction kinetics. Water Res 100:466–475CrossRefPubMedGoogle Scholar
  137. 137.
    Farrán MA, Bonet MA, Claramunt RM, Torralba MC, Alkorta I, Elguero J (2018) The structures of 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles related to J147, a drug for treating Alzheimer’s disease. Acta Crystallogr Sect C 74:513–522CrossRefGoogle Scholar
  138. 138.
    Sánchez-Sanz G, Alkorta I, Elguero J (2011) A theoretical study of the conformation of 2,2'-bifuran, 2,2'-bithiophene, 2,2'-bitellurophene and mixed derivatives: chalcogen–chalcogen interactions or dipole–dipole effects? Comput Theor Chem 974:37–42CrossRefGoogle Scholar
  139. 139.
    Tomé AC, Silva AMS, Alkorta I, Elguero J (2011) Atropisomerism and conformational aspects of meso-tetrarylporphyrins and related compounds. J Porphyrins Phthalocyanins 15:1–28CrossRefGoogle Scholar
  140. 140.
    Zardi P, Roisnel T, Gramage-Doria R (2019) A supramolecular palladoim catalyst displaying substrate selectivity by remore control. Chem Eur J 25:627–634PubMedGoogle Scholar
  141. 141.
    Alkorta I, Elguero J, Roussel C (2011) A theoretical study of the conformation, basicity and NMR properties of 2,2'-, 3,3'- and 4,4'-bipyridines and their conjugated acids. Comput Theor Chem 966:334–339CrossRefGoogle Scholar
  142. 142.
    Schneider HJ (2016) Efficiency parameters in artificial allosteric systems. Org Biomol Chem 14:7994–8001CrossRefPubMedGoogle Scholar
  143. 143.
    Alkorta I, Elguero J, Roussel C (2011) Rates of enantiomerization of axially chiral 2,2'-bipyridines with restricted rotation: an ab initio study. Tetrahedron-Asymmetry 22:1180–1183CrossRefGoogle Scholar
  144. 144.
    Najahi E, Vanthuyne N, Nepveu F, Jean M, Alkorta I, Elguero J, Roussel C (2013) Atropisomerization in N-aryl-2(1H)-pyrimidin-(thi)ones: a ring-opening/rotation/ring-closure process in place of a classical rotation around the pivot bond. J Organomet Chem 78:12577–12584CrossRefGoogle Scholar
  145. 145.
    Belot V, Farran D, Jean M, Albalat M, Vanthuyne N, Roussel C (2017) Steric scale of common substituents from rotational barriers of N-(o-substituted aryl)thiazoline-2-thione atropisomers. J Organomet Chem 82:10188–10200CrossRefGoogle Scholar
  146. 146.
    Escolástico C, Santa María MD, Claramunt RM, Jimeno ML, Alkorta I, Foces-Foces C, Hernández Cano F, Elguero J (1994) Imidazole and benzimidazole addition to quinones. Formation of meso and d,l isomers and crystal structure of the d,l isomer of 2,3-bis(benzimidazol-1-yl)-1,4-dihydroxybenzene. Tetrahedron 43:12489–12510CrossRefGoogle Scholar
  147. 147.
    Claramunt RM, Elguero J, Escolástico C, Fernández-Castaño C, Foces-Foces C, Llamas-Saiz AL, Santa María MD (1997) Polyazolylbenzenes and related compounds: propellene-like aromatic molecules, targets in heterocyclic systems, vol 1. Italian Society of Chemistry, Roma, pp 1–56Google Scholar
  148. 148.
    Almenningen A, Bastiansen O, Skancke PN (1958) Electron diffraction studies of hexaphenylbenzene vapour. Acta Chem Scand 12:1215–1220CrossRefGoogle Scholar
  149. 149.
    Kosaka T, Inoue Y, Mori T (2016) Toroidal interaction and propeller chirality of hexaarylbenzenes. Dynamic domino inversion revealed by combined experimental and theoretical circular dichroism studies. J Phys Chem Lett 7:783–788CrossRefPubMedGoogle Scholar
  150. 150.
    Yang Y, Chang Z, Yang X, Qi M, Wang J (2018) Selectivity of hexaphenylbenzene-based hydrocarbon stationary phase with propeller-like conformation for aromatic and aliphatic isomers. Anal Chim Acta 1016:69–77CrossRefPubMedGoogle Scholar
  151. 151.
    Cornago P, Claramunt RM, Santa María MD, Alkorta I, Elguero J (1998) Aromatic propellenes. Part 9. Synthesis and conformational study of hexakis(benzimidazol-1'-yl)benzenes. Model Chem 135:475–483Google Scholar
  152. 152.
    Yap GPA, Jové FA, Claramunt RM, Sanz D, Alkorta I, Elguero J (2005) The X-ray molecular structure of 1-(2',4'-dinitrophenyl)-1,2,3-triazole and the problem of the orthogonal interaction between a “pyridine-like” nitrogen and a nitro group. Aust J Chem 58:817–822CrossRefGoogle Scholar
  153. 153.
    Paulini R, Müller K, Diederich F (2005) Orthogonal multipolar interactions in structural chemistry. Angew Chem Int Ed 44:1788–1805CrossRefGoogle Scholar
  154. 154.
    Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr Sect B 58:380–388CrossRefGoogle Scholar
  155. 155.
    Alkorta I, Elguero J (2017) The structure of N-arylindazoles and their aza-derivatives in the solid state: a systematic analysis of the Cambridge Structural Database coupled with DFT calculations. J Mol Struct 1137:186–192CrossRefGoogle Scholar
  156. 156.
    Claramunt RM, Santa María D, Alkorta I, Elguero J (2018) The structure of N-phenyl pyrazoles and indazoles: Mononitro, dinitro, and trinitro derivatives. J Heterocyclic Chem 55:44–64CrossRefGoogle Scholar
  157. 157.
    Marín-Luna M, Alkorta I, Elguero J (2018) A theoretical NMR study of selected benzazoles: comparison of GIPAW and GIAO-PCM (DMSO) calculations. Magn Reson Chem 56:164–171CrossRefPubMedGoogle Scholar
  158. 158.
    Roussel C, Vanthuyne N, Bouchekara M, Djafri A, Elguero J, Alkorta I (2008) Atropisomerism in the 2-arylimino-N-(2-hydroxyphenyl)thiazoline series: influence of hydrogen bonding on the racemization process. J Organomet Chem 73:403–411CrossRefGoogle Scholar
  159. 159.
    Wu Y, Wang G, Li Q, Xiang J, Jiang H, Wang Y (2018) A multistage rotational speed changing molecular rotor regulated by pH and metal cations. Nat Commun 9:1953CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Alkorta I, Reviriego F, Elguero J, Monge MA, Gutiérrez-Puebla E (2018) The structure of 2,4,6-tris(1H–pyrazol-1-yl)-1,3,5-triazine in the solid state: on polymorphs, pseudo-polymorphs and co-crystals. Struct Chem 29:15–21CrossRefGoogle Scholar
  161. 161.
    Bürgi HB, Dunitz JD (1994) Structure Correlation. Volume 1. VCH, WeinheimCrossRefGoogle Scholar
  162. 162.
    Wolf C (2008) Dynamic stereochemistry of chiral compounds. Principles and applications. The Royal Society of Chemistry, Thomas Graham House, CambridgeGoogle Scholar
  163. 163.
    Mislow K (1976) Stereochemical consequences of correlated rotation in molecular propellers. Acc Chem Res 9:26–33CrossRefGoogle Scholar
  164. 164.
    Foces-Foces C, Hernández Cano F, Martínez-Ripoll M, Faure R, Roussel C, Claramunt RM, López C, Sanz D, Elguero J (1990) Complete energy profile of a chiral propeller compound: tris-(2'-methyl-benzimidazol-1-yl)methane (TMBM). Chromatographic resolution on triacetyl cellulose, X-ray structures of the racemic and one enantiomer, and dynamic NMR study. Tetrahedron-Asymmetry 1:65–86CrossRefGoogle Scholar
  165. 165.
    Sedó J, Ventosa N, Molins MA, Pons M, Rovira C, Veciana J (2001) Stereoisomerism of molecular multipropellers. 2. Dynamic stereochemistry of bis- and tris-triaryl systems. J Organomet Chem 66:1579–1589CrossRefGoogle Scholar
  166. 166.
    Ratera I, Veciana J (2012) Playing with organic radicals as building blocks for functional molecular materials. Chem Soc Rev 41:303–349CrossRefPubMedGoogle Scholar
  167. 167.
    Claramunt RM, Elguero J, Fabre MJ, Foces-Foces C, Hernández Cano F, Hernándes Fuentes I, Jaime C, López C (1989) A conformational study of bis-, tris- and tetrakis-pyrazolylmethane. Crystallography, L.S.R. dipole moments and theoretical calculations. Tetrahedron 45:7805–7816CrossRefGoogle Scholar
  168. 168.
    Zimmermann TJ, Freundel O, Gompper R, Müller TJJ (2000) Synthesis and electronic properties of tetrakis[4-(pyrimidyl)phenyl]methanes – a novel class of electronically active nanometer-sized scaffolds. Eur J Org Chem 3305–3312Google Scholar
  169. 169.
    Zareba JK, Bialek MJ, Janczak J, Zón J, Dobosz A (2014) Extending the family of tetrahedral tectons: phenyl embraces in supramolecular polymers of tetraphenylmethane-based tetraphosphonic acid templated by organic bases. Cryst Growth Des 14:6143–6153CrossRefGoogle Scholar
  170. 170.
    Zadel G, Eisenbraun C, Wolff GJ, Breitmaier E (1994) Enantioselective reactions in a static magnetic field. Angew Chem Int Ed 33:454–456CrossRefGoogle Scholar
  171. 171.
    Bobosik V, López C, Claramunt RM, Roussel C, Stein JL, Thiery D, Elguero J (1993) Synthesis and resolution of bis- and tris-(benzimidazol-1-yl)methanes. Heterocycles 35:1067–1074CrossRefGoogle Scholar
  172. 172.
    Elguero J, Jagerovic N, Werner A, Jimeno ML (1994) Failed attempt to induce chirality using a magnetic field: the case of chiral helicity of tris(2-methylbenzimidazol-1-yl)methane. Heterocycl Commun 1:101–102CrossRefGoogle Scholar
  173. 173.
    Gölitz P (1994) Enantioselective reactions in a static magnetic field A false alarm! Angew Chem Int Ed 33:1457CrossRefGoogle Scholar
  174. 174.
    Feringa BL, Kellog RM, Hulst R, Zondervan C, Kruizinga WH (1994) Attempts to carry out enantioselective reactions in a static magnetic field. Angew Chem Int Ed 33:1458–1459CrossRefGoogle Scholar
  175. 175.
    Kaupp G, Marquardt T (1994) Absolute asymmetric synthesis solely under the influence of a static homogeneous magnetic field? Angew Chem Int Ed 33:1459–1461CrossRefGoogle Scholar
  176. 176.
    Breitmaier E (1994) No enantioselective reactions in a static magnetic field. Angew Chem Int Ed 33:1207Google Scholar
  177. 177.
    Alkorta I, Elguero J (2010) A theoretical analysis of the conformational space of tris(2-methylbenzimidazol-1-yl)methane. Tetrahedron-Asymmetry 21:437–442CrossRefGoogle Scholar
  178. 178.
    Alkorta I, Elguero J (2009) Chirality and chiral recognition, Chapter 3. In: Leszczynski J, Shukla MK (eds) Practical Aspects of Computational Chemistry. Methods, concepts and applications. Springer, Heidelberg, pp 37–86CrossRefGoogle Scholar
  179. 179.
    Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC, Barron LD (1998) Absolute asymmetric synthesis under physical fields: facts and fiction. Chem Rev 98:2391–2404CrossRefPubMedGoogle Scholar
  180. 180.
    Pagola GI, Ferraro MB, Provasi PF, Pelloni S, Lazzeretti P (2019) Could electronic apolar interactions drive enantioselective syntheses in strongly nonuniform magnetic fields? A computational study. J Chem Theor Comput 15:961–971CrossRefGoogle Scholar
  181. 181.
    Alkorta I, Elguero J, García MA, López C, Claramunt RM, Andrade GA, Yap GPA (2013) A tris(pyrazol-1-yl)methane bearing carboxylic acid groups at position 4: {1-[bis(4-carboxy-3,5-dimethyl-1H-pyrazol-1-yl)methyl]-3,5-dimethyl-1H-pyrazole-4-carboxylato}. Acta Crystallogr Sect C 69:972–976CrossRefGoogle Scholar
  182. 182.
    Alkorta I, Claramunt RM, Díez-Barra E, Elguero J, de la Hoz A, López C (2017) The organic chemistry of poly(1H-pyrazol-1-yl)methanes. Coord Chem Rev 339:153–182CrossRefGoogle Scholar
  183. 183.
    Silva VLM, Silva AMS, Claramunt RM, Sanz D, Infantes L, Martínez López A, Reviriego F, Alkorta I, Elguero J (2019) An example of polynomial expansion: the reaction of 3(5)-methyl-1H-pyrazole with chloroform and characterization of the four isomers. Molecules 24:568CrossRefPubMedCentralGoogle Scholar
  184. 184.
    Silva VLM, Silva AMS, Claramunt RM, Nieto CI, López C, Sanz D, Infantes L, Martínez López A, Reviriego F, Alkorta I, Elguero J (2019) New tetrakis(1H-pyrazol-1-yl)methanes. Manuscript in preparationGoogle Scholar
  185. 185.
    Trofimenko S (1966) Boron-pyrazole chemistry. J Am Chem Soc 88:1842–1844CrossRefGoogle Scholar
  186. 186.
    Trofimenko S (1999) Scorpionates: polypyrazolylborate ligands and their coordination chemistry. Imperial College Press, LondonCrossRefGoogle Scholar
  187. 187.
    Trofimenko S, Yap GPA, Jové FA, Claramunt RM, García MA, Santa María MD, Alkorta I, Elguero J (2007) Structure and tautomerism of 4-bromo substituted 1H-pyrazoles. Tetrahedron 63:8104–8111CrossRefGoogle Scholar
  188. 188.
    Santa María MD, Claramunt RM, Alkorta I, Elguero J (2007) A theoretical and experimental study of the fluxional behaviour of molybdenum dihydrobis- and hydrotris-pyrazolylborates. Dalton Trans 3995–3999Google Scholar
  189. 189.
    Alkorta I, Elguero J, Claramunt RM, López C, Sanz D (2010) A theoretical multinuclear NMR study of pyrazolylborates. Heterocycl Commun 16:261–268CrossRefGoogle Scholar
  190. 190.
    Infantes L, Claramunt RM, Sanz D, Alkorta I, Elguero J (2016) The structures of two scorpionates: thallium tetrakis(3-phenyl-1H-pyrazol-1-yl)borate and potassium tetrakis(3-cyclopropyl-1H-pyrazol-1-yl)borate. Acta Crystallogr Sect C 72:819–825CrossRefGoogle Scholar
  191. 191.
    Infantes L, Moreno JM, Claramunt RM, Sanz D, Alkorta I, Elguero J (2018) The structure of four thallium tris(1H-pyrazol-1-yl)hydroborates in the solid state by X-ray crystallography and in solution by NMR and DFT-GIAO calculations. Inorg Chim Acta 483:402–410CrossRefGoogle Scholar
  192. 192.
    Chen CF, Shen Y (2017) Helicene chemistry: from synthesis to applications. Springer-Verlag, BerlinCrossRefGoogle Scholar
  193. 193.
    Církva V, Jakubík P, Strasak T, Hrbác J, Sykora J, Císarová I, Vacek J, Zádny J, Storch J (2019) Preparation and physicochemical properties of [6]helicenes fluorinated at terminal rings. J Organomet Chem 84:1980–1993CrossRefGoogle Scholar
  194. 194.
    Salerno F, Rice B, Schmidt JA, Fuchter MJ, Nelson J, Jelfs KE (2019) The influence of nitrogen position on charge carrier mobility in enantiopure aza[6]helicene crystals. Phys Chem Chem Phys 21:5059–5067CrossRefPubMedGoogle Scholar
  195. 195.
    Abarca B, Ballesteros R, Adam R, Ballesteros-Garrido R, Leroux FR, Colobert F, Alkorta I, Elguero J (2014) A theoretical and experimental study of the racemization process of hexaaza[5]helicenes. Tetrahedron 70:8750–8757CrossRefGoogle Scholar
  196. 196.
    Alkorta I, Blanco F, Elguero J, Schröder D (2010) Distinction between homochiral and heterochiral dimers of 1-aza[n]helicenes (n = 1-7) with alkaline cations. Tetrahedron-Asymmetry 21:962–968CrossRefGoogle Scholar
  197. 197.
    Goerick L, Sharma R (2016) The INV24 test set: How well do quantum-chemical methods describe inversion and racemization barrier? Can J Chem 94:1133–1143CrossRefGoogle Scholar
  198. 198.
    Barroso J, Cabellos JL, Pan S, Murillo F, Zarate X, Ferández-Herrera MA, Merino G (2018) Revisiting the racemization mechanism of helicenes. Chem Commun 54:188–191CrossRefGoogle Scholar
  199. 199.
    Janke RH, Haufe G, Würthwein EU, Borkent JH (1996) Racemization barriers of helicenes: a computational study. J Am Chem Soc 118:6031–6035CrossRefGoogle Scholar
  200. 200.
    Jakubec M, Beránek T, Jakubíc P, Sykora J, Zádny J, Církva V, Storch J (2018) 2-Bromo[6]helicene as a key intermediate for [6]helicene functionalization. J Organomet Chem 83:3607–3616CrossRefGoogle Scholar
  201. 201.
    Yamamoto K, Harada T, Okamoto Y, Chikamatsu H, Nakazaki M, Kai Y, Nakao T, Tanaka M, Harada S, Kasai N (1988) Synthesis and molecular structure of [7]circulene. J Am Chem Soc 110:3578–3584CrossRefGoogle Scholar
  202. 202.
    Alkorta I, Blanco F, Elgyero J (2008) Theoretical study of racemization in chiral alkenylidene truxenes. J Phys Org Chem 21:381–386CrossRefGoogle Scholar
  203. 203.
    Pérez EM, Illescas BM, Herranz MA, Martín N (2009) Supramolecular chemistry of π-extended analogues of TTF and carbon nanostructures. New J Chem 33:228–234CrossRefGoogle Scholar
  204. 204.
    Goubard F, Dumur F (2015) Truxene: a promising scaffold for future materials. RSC Adv 5:3521–3551CrossRefGoogle Scholar
  205. 205.
    Elguero J (2017) Hombres de ciencia y creadores: eso somos los químicos. An Quim 113:218–233Google Scholar
  206. 206.
    Reymond JL (2015) The chemical space project. Acc Chem Res 48:722–730CrossRefPubMedGoogle Scholar
  207. 207.
    Delalande C, Awale M, Rubin M, Probst D, Ozhathil LC, Gertsch J, Abriel H, Reymond JL (2019) Optimizing TRPM4 inhibitors in the MHFP6 chemical space. Eur J Med Chem 166:167–177CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Química Médica, CSICMadridSpain

Personalised recommendations