Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1993–2001 | Cite as

Internal rotation and intramolecular hydrogen bonding in thiosalicylamide: gas phase electron diffraction study supported by quantum chemical calculations

  • Inna N. KolesnikovaEmail author
  • Anatolii N. Rykov
  • Maxim V. Shuvalov
  • Igor F. Shishkov
Original Research
  • 25 Downloads

Abstract

The molecular structure of thiosalicylamide (2-hydroxythiobenzamide) was investigated in the gas phase at 401 K by means of gas electron diffraction (GED) combined with quantum chemical (QC) calculations. Special attention was paid to the internal rotation of the thioamide group. Structural refinement was performed taking into account rovibrational corrections to the thermal-average internuclear distances calculated with harmonic and anharmonic (cubic) MP2/cc-pVTZ force constants in terms of static and dynamic models. It was shown that both models fitted the GED data equally well. The results of the GED refinement revealed that in the equilibrium structure, the thioamide group is twisted by about 30° with respect to the phenol ring plane. This is the result of an interatomic repulsion of hydrogen atom in the amide group from the closest hydrogen atom of the benzene ring, which overcomes the energy gain from the π−π conjugation of the thioamide group and the aromatic system of thiosalicylamide. Natural bond orbital (NBO) analysis and comparison of the thiosalicylamide molecular structure with those of related compounds revealed hydrogen-bonded fragment between the hydroxyl and thiocarbonyl groups. The structure of thiosalicylamide in the gas phase was found to be markedly different from that in the solid phase due to the effect of intermolecular hydrogen bonding in the crystal.

Keywords

Thiosalicylamide 2-Hydroxythiobenzamide Molecular structure Gas electron diffraction Quantum chemistry Internal rotation Intramolecular hydrogen bonding 

Notes

Acknowledgments

The authors express their gratitude to Dr. Ilya I. Marochkin from Lomonosov Moscow State University, Arseniy A. Otlyotov, Dr. Yury A. Zabanov, and Prof. Nina I. Giricheva from Ivanovo State University of Chemistry and Technology for valuable consultations which were very useful for preparing this manuscript.

Funding information

This project was made with financial support of the Russian Foundation for Basic Research (Grant Number 18-33-00546 mol_a).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11224_2019_1369_MOESM1_ESM.docx (712 kb)
ESM 1 (DOCX 712 kb)

References

  1. 1.
    Pospisilova S, Michnova H, Kauerova T, Pauk K, Kollar P, Vinsova J, Imramovsky A, Cizek A, Jampilek J (2018). Bioorg Med Chem Lett 28(12):2184–2188.  https://doi.org/10.1016/j.bmcl.2018.05.011 CrossRefGoogle Scholar
  2. 2.
    Ueda J, Khan ST, Takagi M, Shin-ya K (2010). J Antibiot 63(5):267–269.  https://doi.org/10.1038/ja.2010.26 CrossRefGoogle Scholar
  3. 3.
    Hardie DG (2013). Diabetes 62(7):2164–2172.  https://doi.org/10.2337/db13-0368 CrossRefGoogle Scholar
  4. 4.
    Mehanna AS, Kim JY (2005). Bioorg Med Chem 13(13):4323–4331.  https://doi.org/10.1016/j.bmc.2005.04.012 CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Mantravadi PK, Jobbagy S, Bao W, Koh JT (2016). ACS Chem Biol 11(10):2797–2802.  https://doi.org/10.1021/acschembio.6b00659 CrossRefGoogle Scholar
  6. 6.
    Palomar J, De Paz JLG, Catalán J (1999). Chem Phys 246(1–3):167–208.  https://doi.org/10.1016/s0301-0104(99)00159-7 CrossRefGoogle Scholar
  7. 7.
    Pertlik F (1990). Monatsh Chem 121:129–139.  https://doi.org/10.1007/BF00809525 CrossRefGoogle Scholar
  8. 8.
    Velcheva EA, Stamboliyska BA (2008). J Mol Struct 875(1–3):264–271.  https://doi.org/10.1016/j.molstruc.2007.04.038 CrossRefGoogle Scholar
  9. 9.
    Anandan K, Kolandaivel P, Kumaresan R (2005). Int J Quantum Chem 104(3):286–298.  https://doi.org/10.1002/qua.20559 CrossRefGoogle Scholar
  10. 10.
    Manin AN, Voronin AP, Perlovich GL (2013). Thermochim Acta 551:57–61.  https://doi.org/10.1016/j.tca.2012.10.013 CrossRefGoogle Scholar
  11. 11.
    Aarset K, Page EM, Rice DA (2013). J Phys Chem A 117(14):3034–3040.  https://doi.org/10.1021/jp311003d CrossRefGoogle Scholar
  12. 12.
    Banerjee K, Raychaudhury S (1982). Bull Chem Soc Jpn 55(11):3621–3624.  https://doi.org/10.1246/bcsj.55.3621 CrossRefGoogle Scholar
  13. 13.
    Sambathkumar K (2015). Spectrochim Acta A 147:51–66.  https://doi.org/10.1016/j.saa.2015.03.052 CrossRefGoogle Scholar
  14. 14.
    Jezierska A, Panek JJ, Mazzarello R (2009). Theor Chem Accounts 124(5–6):319–330.  https://doi.org/10.1007/s00214-009-0612-2 CrossRefGoogle Scholar
  15. 15.
    Briel D (2005). Heterocycles 65(6):1295–1309CrossRefGoogle Scholar
  16. 16.
    Kochikov IV, Kovtun DM, Tarasov YI (2008). Num Meth Program 9:12–18 http://num-meth.srcc.msu.ru/zhurnal/tom_2008/pdf/v9r202.pdf. Accessed 13.09.2010
  17. 17.
    Frish MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann JR, Burant JC, DapprichS, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komazomi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03 (Revision D01). Gaussian Inc., PittsburghGoogle Scholar
  18. 18.
    Becke AD (1988). Phys Rev A 38(6):3098–3000.  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  19. 19.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  20. 20.
    Møller C, Plesset MS (1934). Phys Rev 46:618–622.  https://doi.org/10.1103/PhysRev.46.618 CrossRefGoogle Scholar
  21. 21.
    Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988). J Chem Phys 89:2193–2218.  https://doi.org/10.1063/1.455064 CrossRefGoogle Scholar
  22. 22.
    Dunning TH (1989). J Chem Phys 90:1007–1023.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  23. 23.
    Weinhold F, Landis CR (2001). Chem Educ Res Pract 2:91–104.  https://doi.org/10.1039/B1RP90011K CrossRefGoogle Scholar
  24. 24.
    G. A. Zhurko, D. A. Zhurko, ChemCraft 1.6 build vol. 332 https://www.chemcraftprog.com/index.html. Accessed 20.06.2010
  25. 25.
    Vishnevskiy YV, UNEX, 2007, version 1.5. http://unexprog.org. Accessed 2.09.2013
  26. 26.
    Ischenko AA, Girichev GV, Tarasov YI (2013) Electron diffraction: structure and dynamics of free molecules and condensed state of substance. Fizmatlit, MoscowGoogle Scholar
  27. 27.
    Sipachev VA (2000). Struct Chem 11:167–172.  https://doi.org/10.1023/A:1009217826943 CrossRefGoogle Scholar
  28. 28.
    Vishnevskiy YV, Zhabanov YA (2015). J Phys Conf Ser 633:012076.  https://doi.org/10.1088/1742-6596/633/1/012076 CrossRefGoogle Scholar
  29. 29.
    Tikhonov DS, Vishnevskiy YV, Rykov AN, Grikina OE, Khaikin LS (2017). J Mol Struct 1132:20–27.  https://doi.org/10.1016/j.molstruc.2016.05.090 CrossRefGoogle Scholar
  30. 30.
    Kolesnikova IN, Putkov AE, Rykov AN, Shishkov IF (2018). J Mol Struct 1161:76–82.  https://doi.org/10.1016/j.molstruc.2018.01.084 CrossRefGoogle Scholar
  31. 31.
    Portalone G, Schultz G, Domenicano A, Hargittai I (1992). Chem Phys Lett 197:482–488.  https://doi.org/10.1016/0009-2614(92)85804-J CrossRefGoogle Scholar
  32. 32.
    Pauling L (1960) The nature of the chemical bond3rd edn. Cornell University Press, IthacaGoogle Scholar
  33. 33.
    Wiberg KB (1968). Tetrahedron 24:1083–1196.  https://doi.org/10.1016/0040-4020(68)88057-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations