Structural Chemistry

, Volume 30, Issue 5, pp 1579–1610 | Cite as

The linkage between reversible Friedel–Crafts acyl rearrangements and the Scholl reaction

  • Israel AgranatEmail author
  • Yaacov Netanel Oded
  • Tahani Mala’bi
  • Sergey Pogodin
  • Shmuel Cohen
Original Research


Friedel–Crafts acyl rearrangements in PPA (at 80–240 °C) and Scholl reactions in AlCl3/NaCl (at 140–220 °C) of benzoylnaphthalenes and fluorobenzoylnaphthalenes have been studied experimentally as a function of temperature and time and computationally. 1BzNA, 2BzNA, 1-4FBzNA, 2-4FBzNA, 1-3FBzNA, 2-3FBzNA, 1-2FBzNA, and 2-2FBzNA were synthesized by classical Friedel–Crafts acylations of naphthalene with benzoyl chloride, benzene with 2-naphthoyl chloride, fluorobenzene with 1- and 2-naphthoyl chlorides and of naphthalene with fluorobenzoyl chlorides, and served as substrates in the investigation. Their structures have been determined by X-ray crystallography and verified by their 1H-, 13C-, and 19F-NMR spectra. 1BzNA, 1-4FBzNA, 1-3FBzNA, and 2-2FBzNA crystallized as the E-diastereomers, whereas 2BzAN, 1-2FBzAN, 2-4FBzAN, and 2-3FBzAN crystallized as the Z-diastereomers. The deviations of the carbonyl group from the naphthyl plane were higher as compared with the deviations from the phenyl plane and were considerably higher in the α-naphthyl ketones than in the β-naphthyl ketones. Intermolecular interactions due to C–H···O and/or C–H···F contacts in the crystal structures of 1E-4FBzNA and 1E1′E-3FBzAN have been revealed. 1BzNA rearranged in PPA under argon to 2BzNA via deacylation to naphthalene (e.g., 140 °C, 10 h) and underwent a regioselective intramolecular cyclodehydrogenation at high temperatures to the Scholl reaction product 7H-benz[de]anthracen-7-one (BdeAN) (e.g., 200 °C, 6 h). At 80 °C, benzene was isolated. 2BzNA underwent in PPA deacylation to naphthalene (e.g., 160 °C, 6 h) and an intramolecular cyclodehydrogenation to BdeAN at high temperatures (e.g., 220 °C, 6 h), necessarily via the putative intermediate 1BzNA. Higher yields of the acyl rearrangement and the Scholl reaction products were obtained under oxygen. 1-4FBzNA and 2-4FBzNA reacted in PPA analogously to 1BzNA and 2BzNA, respectively, with the following exceptions: 2-4FBzNA underwent an acyl rearrangement in PPA to 1-4FBzNA at 260–300 °C, without any formation of the Scholl reaction product 10FBdeAN. 1-4FBzNA also did not yield 10FBdeAN. 1-2FBzNA and 2-2FBzNA behaved similarly. The formation of naphthalene and benzene in the deacylation steps indicated cleavages of both the 1- and 2-naphthyl–benzoyl bonds and the 1- and 2-naphthoyl–phenyl bonds to give naphthalene and benzoylium cation and benzene and 1- and 2-naphthoylium cation, respectively. At 80–100 °C, 1-2FBzNA, 1-3FBzNA, and 1-4FBzNA underwent deacylations to fluorobenzene in PPA, followed by reacylation, each giving a mixture of the three 1-fluorobenzoylnaphthalenes. 2FBzNA, 2-3FBzNA, and 2-4FBzNA behaved similarly, each giving a mixture of the three 2-fluorobenzoylnaphthalenes. The results taken together verified the reversibility of the 1-BzNA2BzNA acyl rearrangements in PPA. The Scholl reaction (AlCl3/NaCl) of 1BzNA (e.g., at 140 °C) gave BdeAN and 2BzNA, whereas 2BzNA gave only BdeAN (at 200–220 °C). 1-4FBzNA and 2-4FBzNA gave (at 200–220 °C) only 2-4FBzNA and 1-4FBzNA, respectively. All the six FBzNA isomers failed to undergo Scholl reaction cyclodehydrogenations to give any FBdeAN isomer. A linkage between the Friedel–Crafts acyl rearrangements and the Scholl reaction has thus been established. A systematic DFT study at B3LYP/6-311(d,p)/PCM (formic acid)) substantiated the predicted mechanism and the reversibility of the acyl rearrangements of benzoylnaphthalenes, in which 1BzNA and 2BzNA are the kinetically controlled and the thermodynamically controlled products, respectively. The DFT-calculated Gibbs free-energy of the transition-state (1Z-1BzNH+ ➔➔ 2σ-2BzNA) in the Friedel–Crafts acyl rearrangement of 1Z-BzNA is considerably lower than the transition state of the cyclization step in the arenium-cation mechanism of the Scholl reaction, in line with experiment, which indicated higher temperatures for the Scholl reaction. DFT calculations of the dication pathway of the Scholl reaction of the E- and Z-diastereomers/conformers of 1BzNA confirmed the preference of the formation of BdeAN versus BaFL, consistently with experiment.


Reversibility Regioselectivity Deacylations X-ray crystallography DFT Naphthyl ketones Scholl reaction Arenium-cation mechanism Both-directions reaction 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

11224_2019_1368_MOESM1_ESM.docx (758 kb)
ESM 1 (DOCX 757 kb)


  1. 1.
    Wang Z (2009) Friedel-Crafts acylation. Comprehensive organic name reactions and reagents, vol Vol. 1, Chapter 248. Wiley, pp 1126–1130Google Scholar
  2. 2.
    Olah GA (1973) Friedel-Crafts chemistry. Wiley Intersceince, New York, p 102Google Scholar
  3. 3.
    Gore PH (1955). Chem Rev 55:229–281CrossRefGoogle Scholar
  4. 4.
    Norman ROC, Taylor R (1965) Electrophilic substitution in benzenoid compounds, vol Chapter 6. Elsevier, London, p 174Google Scholar
  5. 5.
    Wang Z (2009) Friedel-Crafts alkylation. Comprehensive organic name reactions and reagents, vol Vol. 1, Chapter 249. Wiley, pp 1131–1136Google Scholar
  6. 6.
    Buehler CA, Pearson DE (1970) Friedel-Crafts and related acylations. Survey of organic synthesis, vol Chapter 11, C. Wiley Interscienc, New York, p 653Google Scholar
  7. 7.
    Pearson DE, Buehler CA (1971) Synthesis 455–477Google Scholar
  8. 8.
    Gore PH (1974) (1974) Chem Industry 727–731Google Scholar
  9. 9.
    Andreas AD, Gore PH, Morris FC (1978). J Chem Soc Chem Comm 14:271–272Google Scholar
  10. 10.
    Agranat I, Shih Y-S, Bentor Y (1974). J Am Chem Soc 96:1259Google Scholar
  11. 11.
    Gore PH (1964) Aromatic ketone synthesis. In: Olah GA (ed) Friedel-Crafts and related reactions. Part I, Chapter XXXI, vol Vol. III. Wiley Interscience, New York, pp 1–381Google Scholar
  12. 12.
    Jensen FR (1957). J Am Chem Soc 79:1226–1231CrossRefGoogle Scholar
  13. 13.
    Agranat I, Bentor Y, Shih Y-S (1977). J Am Chem Soc 99:7068–7070CrossRefGoogle Scholar
  14. 14.
    Mala’bi T, Pogodin S, Cohen S, Agranat I (2013). RSC Adv 3:21797–21810Google Scholar
  15. 15.
    Jousselin-Oba T, Sbargoud K, Vaccaro G, Meinardi F,  Yassar A, Frigoli M (2017). Chem Eur J 23:6184–16188Google Scholar
  16. 16.
    Okamoto A, Yonezawa N (2015). J Synth Org Chem 73:339–360CrossRefGoogle Scholar
  17. 17.
    Zubenko AA, Kartsev VG, Morkovnik AS, Divaeva LN, Suponitsky KV (2016). Chemistry Select 1:2560–2564Google Scholar
  18. 18.
    Wang Z (2009) Scholl Reaction (Scholl Condensation). Comprehensive organic name reactions and reagents. Chapter 569, vol Vol. 3. Wiley, pp 2518–2522Google Scholar
  19. 19.
    Scholl R, Mansfeld J (1910). Ber Dtsch Chem Ges 43:1734–1746Google Scholar
  20. 20.
    Scholl R, Seer C (1912). Monatsh Chem 33:1–8CrossRefGoogle Scholar
  21. 21.
    Scholl R, Seer C (1912). Justus Liebigs Ann Chem 394:111–177Google Scholar
  22. 22.
    Wu J, Pisula W, Müllen K (2007). Chem Rev 107:718–747Google Scholar
  23. 23.
    Kränzlein G, Vollmann H (1931) DE Pat. 518,316 (Dec. 31,1931)Google Scholar
  24. 24.
    Kränzlein G,Vollmann H, Diefenbach E (1932) DE Pat. 555,180, (July 19, 1932)Google Scholar
  25. 25.
    Balaban AT, Nenitzescu CD (1964) Dehydrogenation condensation of aromatics (Scholl and related reactions). In: Olah GA (ed) Friedel-Crafts and related reactions, vol Vol. 2, part II. Wiley Intersceince, New York, pp 979–1047Google Scholar
  26. 26.
    Grzybrowski M, Skonieeczny K, Butenschon H, Gryko DT (2013). Angew Chem Int Ed 52:9900–9930Google Scholar
  27. 27.
    Kovacic P, Jones MB (1987). Chem Rev 87:357–379CrossRefGoogle Scholar
  28. 28.
    Kränzlein G (1939) Alumiumchlorid in der Organischen Chemie, 3rd edn. Verlag Chemie, Berlin, p 146Google Scholar
  29. 29.
    Thomas CA (1941) Anhydrous aluminum chloride in organic chemistry. Reinhold Publishing Corporation, New York, pp 648–655Google Scholar
  30. 30.
    Jones HL, Osteryoung RA (1975) Organic reactions in molten Tetrachloroalumate solvents. In: Braunstein J, Mamantov G, Smith GP (eds) Advances in molten salts chemistry, vol Vol. 3, Chapter 3. Plenum Publishing Corp., New York, pp 121–176CrossRefGoogle Scholar
  31. 31.
    Narita A, Wang X-Y, Feng X, Müllen K (2015). Chem Soc Rev 44:6616–6643CrossRefGoogle Scholar
  32. 32.
    Little MS, Yeats SG, Aiwattar AA, Heard KWJ, Raftery J, Edwards AC, Parry AVS, Quale P (2017). Eur J Org Chem:1694–1703Google Scholar
  33. 33.
    Gratz S, Beyer D, Tkachova V, Hellmann S, Berger R, Feng X, Borchardt J (2018). Chem Commun 54:5307–5310Google Scholar
  34. 34.
    Cohen R, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor AJ (2008) Quantities, units and symbols in physical chemistry. IUPAC Green Book. 3rd edn 2nd Printing . IUPAC & RSC Publishing, Cambridge, p 52Google Scholar
  35. 35.
    McNaught AD, Wilkinson A (1997) Chemical Equilibrium, IUPAC Compendium of Chemical Terminology. the “Gold Book”2nd edn. Blackwell Scientific Publications, Oxford XML on-line corrected version: (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. Last update: 2014-02-24; version: 2.3.3. DOI of this term: Google Scholar
  36. 36.
    Pogodin S, Cohen S, Mala’bi T, Agranat I (2011) "Polycyclic aromatic ketones – a crystallographic and theoretical study of acetyl anthracenes", Current trends in X-ray crystallography, Dr. Annamalai Chandrasekaran (Ed.), ISBN: 978-953-307-754-3, InTech, Available from:
  37. 37.
    Mala’bi T, Pogodin S, Agranat I (2011). Tetrahedron Lett 52:1854–1857CrossRefGoogle Scholar
  38. 38.
    Carey FA, Sundberg RJ (2002) Advanced organic chemistry 4th edition, Part A: structure and mechanism, Kluwer Academic Publishers, New York, p 568Google Scholar
  39. 39.
    Davlieva MG, Lindeman SV, Neretin IS, Kochi JK (2005). J Org Chem 70:4013–4021Google Scholar
  40. 40.
    Baddeley G (1949) J Chem Soc S 99–S 103Google Scholar
  41. 41.
    Newman MS, Wiseman EH (1961). J Org Chem 26:3208–3211CrossRefGoogle Scholar
  42. 42.
    Newman MS, Swaminathan S, Chatterji R (1959). J Org Chem 24:1961–1964Google Scholar
  43. 43.
    Huisgen R, Zahler WD (1963). Chem Ber 96:736–746CrossRefGoogle Scholar
  44. 44.
    Macleod LC, Allen CFH (1943). Org Synt, Coll 2:62–64Google Scholar
  45. 45.
    Rao MLN, Venkatesh V, Banerjee D (2007). Tetrahedron 63:12917–12926Google Scholar
  46. 46.
    Dayal SK, Ehrenson S, Taft RW (1972). J Am Chem Soc 94:9113–9122CrossRefGoogle Scholar
  47. 47.
    Wells PR, Ehrenson S, Taft RW (1968). Prog Phys Org Chem 6:147–322Google Scholar
  48. 48.
    CCDC 1532265, 1532266, 1532267, 1532268, 1532269, 1532270, 1532271 and 1532272contain the supplementary crystallographic data for this article. These data can be obtained free of charge at the Cambridge Crystallogrphic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax:+44(0) 1223-336033; email:
  49. 49.
    Moss GP (1996). Basic terminology of stereochemistry (IUPAC recomendation 1996) Pure & Appl. Chem 68:2193–2222Google Scholar
  50. 50.
    Testa B, Caldwell J, Kisakurek MV (eds) (2014) Organic stereochemistry: guiding principle and biomedicinal relevance, VHCA Verlag Helvetica Chim Acta, Zurich and Wiley-VCH, Weinheim, pp 78–79 and 376Google Scholar
  51. 51.
    “IUPAC Blue Book, Nomenclature of organic chemistry – IUPAC recommendations and preferred names 2013” (2013), Chapter P-9, “Specification of configurations and conformations”, pp. 1156–1292, Royal Society of Chemistry, Cambridge, U.K.Google Scholar
  52. 52.
    Zefirov YV (1997). Crystallogr Rep 42:111–116Google Scholar
  53. 53.
    Bondi A (1964). J Phys Chem 68:441–451CrossRefGoogle Scholar
  54. 54.
    Mohri S, Ohisa S, Isozaki K, Yonezawa N, Okamoto A (2015). Acta Cryst C 71:344–350Google Scholar
  55. 55.
    Assadi N, Pogodin S, Cohen S, Agranat I (2012). Struct Chem 23:771–790CrossRefGoogle Scholar
  56. 56.
    Assadi N, Pogodin S, Cohen S, Agranat I (2013). Struct Chem 24:1229–1240Google Scholar
  57. 57.
    Sunanda P, Shubhankar S, Ray JK (2010). Tetrahedron Lett 51:5604–5608Google Scholar
  58. 58.
    Oded YN, Pogodin S, Agranat I (2016). J Org Chem 81:11389–11393CrossRefGoogle Scholar
  59. 59.
    Müller P (1994). Glossary of terms used in physical organic chemistry (IUPAC Recomendation 1994) Pure Appl Chem 66:1077–1184Google Scholar
  60. 60.
    Olah GA, Kuhn SJ (1958). J Am Chem Soc 80:6541–6545CrossRefGoogle Scholar
  61. 61.
    Effenberger F (1989). Acc Chem Res 22:27–35CrossRefGoogle Scholar
  62. 62.
    Liljenberg M, Brinck T, Herschend B, Rein T, Rockwell G, Svensson M (2010). J Org Chem 75:4696–4705CrossRefGoogle Scholar
  63. 63.
    Brinck T, Liljenberg M (2016) The use of quantum chemistry for mechanistic analyses of SEAr reactions. In: Mortier J (ed) Arene chemistry: reaction, mechanisms and methods for aromatic compounds, vol Ch. 4. Wiley, New York, pp 83–105Google Scholar
  64. 64.
    George P, Trachtman M, Bock CW, Brett AM (1976). Tetrahedron 32:317–323Google Scholar
  65. 65.
    Minkin VI (1999) Glossary of terms used in theoretical organic chemistry, (IUPAC recommendation 1999). Pure Appl Chem 71:1919–1981CrossRefGoogle Scholar
  66. 66.
    Rathore R, Kochi JK (1998). Acta Chem Scand 52:114–130CrossRefGoogle Scholar
  67. 67.
    Rempala P, Kroulík J, King BT (2006). J Org Chem 71:5067–5081CrossRefGoogle Scholar
  68. 68.
    King BT, Kroulík J, Robertson CR, Rempala P, Hilton CL, Korinek JD, Gortari LM (2007). J Org Chem 72:2279–2288CrossRefGoogle Scholar
  69. 69.
    Chaolumen, Murata M, Wakamiya A, Murata Y (2017). Angew Chem Int Ed 56:5082–5086Google Scholar
  70. 70.
    Liu J, Narita A, Osella S, Zhang W, Schollmeyer D, Beljonne D, Feng X, Müllen K (2016). J Am Chem Soc 138:2602–2608CrossRefGoogle Scholar
  71. 71.
    Harris RK, Becker ED, De Menezes SMC, Granger P, Hoffman RE, Zilm KW (2008) Further conventions from NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84Google Scholar
  72. 72.
    MiTeGen; LLC P.O. Box 3867 Ithaca, NY 14852Google Scholar
  73. 73.
    SMART-NT V5.6, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, GermanyGoogle Scholar
  74. 74.
    SAINT-NT V5.0, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, GermanyGoogle Scholar
  75. 75.
    SHELXTL-NT V6.1, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, GermanyGoogle Scholar
  76. 76.
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ . Gaussian, Inc., Wallingford CT (2013)Google Scholar
  77. 77.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  78. 78.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789CrossRefGoogle Scholar
  79. 79.
    Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999–3093Google Scholar
  80. 80.
    Thapa B, Schlegel HB (2016). J Phys Chem A 120:5726–5735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Organic Chemistry, Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations