Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2409–2417 | Cite as

Regulating PdC3/PtC3···thiophene interaction by small molecule doping (AgOTf, CuBr, CuI, CuBr2, PdCl2)

  • Jiao Lv
  • Ling Wang
  • Zheng Sun
  • Qingzhong Li
  • Xiaoyan LiEmail author
Original Research
  • 49 Downloads

Abstract

The influences of small molecule doping on PdC3/PtC3···thiophene interaction have been investigated by atoms in molecules (AIM) theory, electron location function (ELF), electron decomposition analysis (EDA), natural bond orbital (NBO) analysis, and molecular formation density difference (MFDD). The results show that PdC3/PtC3···thiophene interactions are of moderate strength and display partial covalent character. Both the strength and the covalent character of PtC3···thiophene interactions are stronger than those of PdC3···thiophene interactions. Small molecules with different valence state metal doping on thiophene ring show different influences on the strength and nature of PdC3/PtC3···thiophene interactions. The bivalent metals enhance both the strength and covalent character of PdC3/PtC3···thiophene interactions. The monovalent metals have little influence on the strength, only enhance the covalent character of PdC3/PtC3···thiophene interactions.

Keywords

PdC3/PtC3···thiophene interaction Small molecule doping Topological analysis of electron density 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Contract Nos. 21372062), the Education Department Foundation of Hebei Province (Contract No. ZD2018066) and the Foundation of Hebei Normal University (L2019Z03).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1362_MOESM1_ESM.doc (154 kb)
ESM 1 (DOC 153 kb)

References

  1. 1.
    Clark T, Hennemann M, Murray JS (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296PubMedGoogle Scholar
  2. 2.
    Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14278–294Google Scholar
  3. 3.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Phys 12:7748–7757Google Scholar
  4. 4.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794PubMedPubMedCentralGoogle Scholar
  5. 5.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311PubMedGoogle Scholar
  6. 6.
    Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292Google Scholar
  7. 7.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189Google Scholar
  8. 8.
    Quiñonero D (2017) Sigma-hole carbon-bonding interactions in carbon-carbon double bonds: an unnoticed contact. Phys Chem Chem Phys 19:15530–15540PubMedGoogle Scholar
  9. 9.
    Zhang XY, Li XY, Zeng YL, Zheng SJ, Meng LP (2015) Enhancing σ/π-type copper (I)⋯ thiophene interactions by metal doping (metal= Li, Na, K, Ca, Sc). Dalton Trans 44:1283–1291PubMedGoogle Scholar
  10. 10.
    Gao L, Zeng YL, Zhang XY, Meng LP (2016) Comparative studies on group III σ-hole and π-hole interactions. J Comput Chem 37:1321–1327PubMedGoogle Scholar
  11. 11.
    Wang H, Wang W, Jin WJ (2016) σ-Hole bond vs π-hole bond: a comparison based on halogen bond. Chem Rev 116:5072–5104PubMedGoogle Scholar
  12. 12.
    Cho HG, Andrews L (2004) Reactions of laser-ablated palladium and platinum atoms with ethylene: an infrared study of the palladium complex and platinum insertion product isolated in solid argon. J Phys Chem A 108:6272–6278Google Scholar
  13. 13.
    Zhang XG, Liyanage R, Armentrout PB (2001) Potential energy surface for activation of methane by Pt+: a combined guided ion beam and DFT study. J Am Chem Soc 123:5563–5575PubMedGoogle Scholar
  14. 14.
    Harding DJ, Fielicke A (2014) Platinum group metal clusters: from gas-phase structures and reactivities towards model catalysts. Chem Eur J 20:3258–3267PubMedGoogle Scholar
  15. 15.
    Harding DJ, Kerpal C, Meijer G, Fielicke A (2012) Activated methane on small cationic platinum clusters. Angew Chem Int Ed 51:817–819Google Scholar
  16. 16.
    Daniel Z, David PT, Nicholas RW, Anthony CL (2016) Highly unsaturated platinum and palladium carbenes PtC3 and PdC3 isolated and characterized in the gas phase. Angew Chem Int Ed 55:3768–3771Google Scholar
  17. 17.
    Cho HG, Andrews L (2009) Infrared spectra of platinum insertion and methylidene complexes prepared in oxidative C−H(X) reactions of laser-ablated Pt atoms with methane, ethane, and halomethanes. Organometallic. 28:1358–1368Google Scholar
  18. 18.
    Pyykkö P, Patzschke M, Suurpere J (2003) Calculated structures of [Au=C=Au]2+ and related systems. Chem Phys Lett 381:45–52Google Scholar
  19. 19.
    Lo PK, Lau KC (2011) High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and orole, C4H4X/C4H4X+ (X= S, O, NH, CH2 and BH). J Phys Chem A 115:932–939PubMedGoogle Scholar
  20. 20.
    McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574PubMedGoogle Scholar
  21. 21.
    Ramirez-Solis A, Kirtman B, Bernal-Jáquez R, Zicovich-Wilson C (2009) Periodic density functional theory studies of Li-doped polythiophene: dependence of electronic and structural properties on dopant concentration. J Chem Phys 130:164904PubMedGoogle Scholar
  22. 22.
    Gigli G, Inganäs O, Anni M, Vittorio MD, Cingolani R, Barbarella G, Favaretto L (2001) Multicolor oligothiophene-based light-emitting diodes. Appl Phys Lett 78:1493–1495Google Scholar
  23. 23.
    Walter M, Handan Y, Jeronimo M, Abdelader van der Waals KA (2017) Inclusive density functional theory study of the nature of bonding for thiophene adsorption on Ni (100) and Cu (100) surfaces. J Phys Chem C 121:6090–6103Google Scholar
  24. 24.
    Zhou L, Shi Y, Xiao Q, Liu Y, Ye F, Zhang Y, Wang J (2011) CuBr-catalyzed coupling of N-tosylhydrazones and terminal alkynes: synthesis of benzofurans and indoles. Org Lett 13:968–971PubMedGoogle Scholar
  25. 25.
    Josephine Y, Fang Y, Mark L (2006) CuI-catalyzed tandem intramolecular amidation using gem-dibromovinyl systems. Org Lett 8:653–656Google Scholar
  26. 26.
    Chen C, Peter GD (2005) Synthesis of benzo furans via CuI-catalyzed ring closure. J Org Chem 70:6964–6967PubMedGoogle Scholar
  27. 27.
    Guan Z, Zhang Z, Ren Z, Wang Y, Zhang X (2011) Synthesis of enamides via CuI-catalyzed reductive acylation of ketoximes with NaHSO3. J Org Chem 76:339–341PubMedGoogle Scholar
  28. 28.
    Ye F, Shi Y, Zhou L, Xiao Q, Zhang Y, Wang J (2011) Expeditious synthesis of phenanthrenes via CuBr2-catalyzed coupling of terminal alkynes and N-tosylhydrazones derived from O-formyl biphenyls. Org Lett 13:5020–5023PubMedGoogle Scholar
  29. 29.
    Shcherbinin VA, Shpuntov PM, Konshin VV, Butin AV (2016) CuBr2 catalyzed synthesis of 3-furylphthalides. Tetrahedron Lett 57:1473–1475Google Scholar
  30. 30.
    Ma S, Wu B, Jiang X (2005) PdCl2-catalyzed efficient transformation of propargylic amines to (E)-α-chloroalkylidene-β-lactams. J Org Chem 70:2588–2593PubMedGoogle Scholar
  31. 31.
    Boukherroub R, Chatgilialoglu C, Manuel G (1996) PdCl2-catalyzed reduction of organic halides by triethylsilane. Organometallics 15:1508–1510Google Scholar
  32. 32.
    Boonseng S, Roffe GW, Spencer J, Cox H (2015) The nature of the bonding in symmetrical pincer palladacycles. Dalton Trans 44:7570–7577PubMedGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  34. 34.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620PubMedPubMedCentralGoogle Scholar
  35. 35.
    Boys SF, Bernardi FD (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566Google Scholar
  36. 36.
    Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691PubMedGoogle Scholar
  37. 37.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  38. 38.
    Popelier PLA (2000) Atoms in molecules: an introduction. Pearson Education Limited, EssexGoogle Scholar
  39. 39.
    Matta CF, Boyd RJ, Becke A (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, WeinheimGoogle Scholar
  40. 40.
    Keith TA (2012) AIMALL, 13.02.26, USA, 2012Google Scholar
  41. 41.
    Feixas F, Matito E, Duran M, Solà M, Silvi B (2010) Electron localization function at the correlated level: a natural orbital formulation. J Chem Theory Comput 6:2736–2742PubMedPubMedCentralGoogle Scholar
  42. 42.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604Google Scholar
  43. 43.
    Matito E, Silvi B, Duran M, Solà M (2006) Electron localization function at the correlated level. J Chem Phys 125:24301PubMedGoogle Scholar
  44. 44.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592PubMedPubMedCentralGoogle Scholar
  45. 45.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926Google Scholar
  46. 46.
    ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, available from: http://www.scm.com
  47. 47.
    Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628Google Scholar
  48. 48.
    Bone RGA, Bader RFW (1996) Identifying and analyzing intermolecular bonding interactions in van der Waals molecules. J Phys Chem 100:10892–10911Google Scholar
  49. 49.
    Bader RFW, Stephens ME (1975) Spatial localization of the electronic pair and number distributions in molecules. J Am Chem Soc 97:7391–7399Google Scholar
  50. 50.
    Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103:304–314Google Scholar
  51. 51.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403Google Scholar
  52. 52.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686Google Scholar
  53. 53.
    Savin A, Becke A, Flad J, Nesper R, Preuss H, Von Schnering H (1991) A new look at electron localization. Angew Chem Int Ed Engl 30:409–412Google Scholar
  54. 54.
    Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33:2363–2379PubMedGoogle Scholar
  55. 55.
    Daudel R (1952) Remarque sur le role de lindiscernabilite des electrons en chimie theorique. C R Acad Sci 235:886–888Google Scholar
  56. 56.
    Zheng SJ, Hada M, Nakatsuji H (1996). Thermochim Acta 93:67–78Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.National Demonstration Center for Experimental ChemistryHebei Normal UniversityShijiazhuangChina
  3. 3.The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople’s Republic of China

Personalised recommendations