Structural Chemistry

, Volume 30, Issue 6, pp 2339–2346 | Cite as

Coordination and ligands’ effects in trinuclear [Pd3(COT)2(L)]2+ (L = H2O, CO, N2, HCN, HNC, NH3, PH3, PCl3, PF3, CS, CH2) sandwich complexes of cyclooctatetraene: theoretical investigation

  • Akila Benmachiche
  • Bachir ZouchouneEmail author
Original Research


This paper reports the molecular structure, the electronic structure, and the decomposition energies of the [M3(COT)2(L)]2+ (M = Cr, Fe, Pd, and L = H2O, CO, N2, HCN, HNC, NH3, PH3, PCl3, PF3, CS, CH2, and COT = C8H8) complexes obtained by means of DFT method using BP86 and PW91 functionals with the TZP basis set. The Pd–L bonding between the Pd3 moiety and both COT ligands is weakly sensitive to the nature of the ancillary L ligands. In accordance with the coordination modes, the COT behaves as neutral distorted ligand deviating from the planarity. The calculations showed that the various complexes are found to have a low spin ground state. The MO plots and Wiberg bond indices provide further information about the nature of the Pd–Pd bonding. The Ziegler–Rauk energy decomposition analysis scheme was employed to characterize the geometry distortion and steric interaction (electrostatic and Pauli) and orbital interaction terms in the total bonding energy of Pd complexes. The results showed that the interaction terms are governed by one third covalent and two third ionic characters, in agreement with the ΔEelstat (electrostatic) and ΔEorb (orbital) contributions, respectively, into the total attractive interaction (ΔEelstat + ΔEorb) for the studied complexes except for those of PCl3 and N2 ligands, which are almost of half covalent and half ionic characters. The σ-donation and π-backdonation amounts indicate that the CH2 is the strongest donor ligand; however, the HCN is revealed to be the weakest σ-donor and π-acceptor one. The σ-donation and π-backdonation are in perfect accord with the natural charges of the interacting fragments.


Ligand–palladium interactions σ-Donation π-Backdonation Energy decomposition 


Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding information

The author received financial support from the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11224_2019_1351_MOESM1_ESM.docx (49 kb)
ESM 1 (DOCX 48 kb)


  1. 1.
    Murahashi T, Fujimoto M, Oka MA, Hashimoto Y, Uemura T, Tatsumi Y, Nakao Y, Ikeda A, Sakaki S, Kurosawa H (2006) Discrete sandwich compounds of monolayer palladium sheets. Science 313:1104–1107PubMedGoogle Scholar
  2. 2.
    Murahashi T, Usui K, Inoue R, Ogoshi S, Kurosawa H (2011) Metallocenoids of platinum: syntheses and structures of triangular triplatinum sandwich complexes of cycloheptatrienyl. Chem Sci 2:117–122Google Scholar
  3. 3.
    Murahashi T, Shirato K, Fukushima A, Takase K, Suenobu T, Fukuzumi S, Ogoshi S, Kurosawa H (2012) Redox-induced reversible metal assembly through translocation and reversible ligand coupling in tetranuclear metal sandwich frameworks. Nat Chem 4:52–58Google Scholar
  4. 4.
    Wang SJ, Li Y, Wu D, Wang F, Li ZR (2012) Quantum mechanical design and structures of hexanuclear sandwich complex and its multidecker sandwich clusters (Li6)n([18]Annulene)n+1 (n = 1–3). J Phys Chem A 116:9189–9196PubMedGoogle Scholar
  5. 5.
    Zhou K (2012) Theoretical study of structure, bonding, and electronic behavior of novel sandwich compounds M3(C6R6)2 (M = Ni, Pd, Pt; R = H, F). J Mol Model 18:4649–4655Google Scholar
  6. 6.
    Tsipis AC, Stalikas AV (2013) Face-to-face stacks of trinuclear gold(I) trihalides with benzene, hexafluorobenzene, and borazine: impact of aromaticity on stacking interactions. Inorg Chem 52:1047–1060PubMedGoogle Scholar
  7. 7.
    Castro M, Mareca P (2014) Theoretical study of neutral and charged Fe7-(C6H6)m, m = 1, 2 rice-ball clusters. J Phys Chem A 118:5548–5558PubMedGoogle Scholar
  8. 8.
    Murahashi T, Fujimoto M, Kawabata Y, Inoue R, Ogoshi S, Kurosawa H (2007) Discrete triangular tripalladium sandwich complexes of arenes. Angew Chem Int Ed 46:5440–5443Google Scholar
  9. 9.
    Valencia I, Castro M (2010) Theoretical study of the structural and electronic properties of the Fe6-(C6H6)m, m 3, 4, complexes. J Phys Chem A 114:21–28PubMedGoogle Scholar
  10. 10.
    Murahashi T, Hashimoto Y, Chiyoda K, Fujimoto M, Uemura T, Inoue R, Ogoshi S, Kurosawa H (2008) Reductive coupling of metal triangles in sandwich complexes. J Am Chem Soc 130:8586–8587PubMedGoogle Scholar
  11. 11.
    Zhou K, Min S, Xue G, Huang W (2014) Theoretical study of the structure, bonding and electronic behaviour of sandwich complexes [M3(C7H7)2X3] (M = Ni, Pd, Pt; X = F, Cl). Chem Phys Lett 610–611:234–240Google Scholar
  12. 12.
    Jin P, Li F, Chen Z (2011) Theoretical design of novel trinuclear sandwich complexes with central M3 triangles (M = Ni, Pd, Pt). J Phys Chem A (11):2402–2408PubMedGoogle Scholar
  13. 13.
    Murahashi T, Kurosawa H (2002) Organopalladium complexes containing palladium/palladium bonds. Coord Chem Rev 231:207–228Google Scholar
  14. 14.
    Mulligan FL, Babbini DC, Davis IR, Hurst SK, Nichol GS (2009) Monomers and polymers of tripalladium(0) ditropylium halides. Inorg Chem 48:2708–2710PubMedGoogle Scholar
  15. 15.
    Jandl C, Pankhurst JR, Love JB, Pöthig A (2017) Rational synthesis and electronic structure of functionalized trinuclear Pd metal sheet sandwich complexes. Organometallics 36:2772–2783Google Scholar
  16. 16.
    Babbini DC, Cluff KJ, Fisher NB (2012) New trimetallic sandwich complexes of platinum(0) and palladium(0). J Organomet Chem 713:217–221Google Scholar
  17. 17.
    Murahashi T, Usui K, Tachibana Y, Kimura S, Ogoshi S (2012) Selective construction of Pd2Pt and PdPt2 triangles in a sandwich framework: carbocyclic ligands as scaffolds for a mixed-metal system. Chem Eur J 18:8886–8890PubMedGoogle Scholar
  18. 18.
    Murahashi T, Kimura S, Takase K, Uemura T, Ogoshi S, Yamamoto K (2014) Bis-cyclooctatetraene tripalladium sandwich complexes. Chem Commun 50:820–822Google Scholar
  19. 19.
    Korichi H, Zouchoune F, Zendaoui SM, Zouchoune B, Saillard JY (2010) The coordination chemistry of azulene: a comprehensive DFT investigation. Organometallics 29:1693–1706Google Scholar
  20. 20.
    Farah S, Bouchakri N, Zendaoui SM, Saillard JY, Zouchoune B (2010) Electronic structure of bis-azepine transition-metal complexes: a DFT investigation. J Mol Struct 953:143–150Google Scholar
  21. 21.
    Saiad A, Zouchoune B (2015) Electronic structure and bonding analysis of transition metal sandwich and half-sandwich complexes of triphenylene ligand. Can J Chem 93:1096–1108Google Scholar
  22. 22.
    Farah S, Ababsa S, Benhamada N, Zouchoune B (2010) Theoretical investigation of the coordination of dibenzazepine to transition-metal complexes: a DFT study. Polyhedron 29:2722–2730Google Scholar
  23. 23.
    Bouchakri N, Benmachiche A, Zouchoune B (2011). Polyhedron. 30:2644–2653Google Scholar
  24. 24.
    Benmachiche A, Zendaoui SM, Bouaoud SE, Zouchoune B (2012) Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: a DFT study. Int J Quantum Chem 11:985–996Google Scholar
  25. 25.
    Farah S, Korichi H, Zendaoui SM, Saillard JY, Zouchoune B (2009) The coordination of azepine to transition-metal complexes: a DFT analysis. Inorg Chim Acta 362:3541–3546Google Scholar
  26. 26.
    Merzoug M, Zouchoune B (2014) Coordination diversity of the phenazine ligand in binuclear transition metal sandwich complexes: theoretical investigation. J Organomet Chem 770:69–78Google Scholar
  27. 27.
    Zendaoui SM, Zouchoune B (2013) Molecular properties and electronic structure of phenazine ligand in binuclear molybdenum and manganese metal complexes: a density functional theory study. Polyhedron 51:123–131Google Scholar
  28. 28.
    Zendaoui MS, Saillard JY, Zouchoune B (2016) Ten-Electron donor indenyl anion in binuclear transition-metal sandwich complexes: electronic structure and bonding analysis. Chem Select (5):940–948Google Scholar
  29. 29.
    Bensalem N, Zouchoune B (2016) Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation. Struct Chem 27:1781–1792Google Scholar
  30. 30.
    Fadli S, Zouchoune B (2017) Coordination chemistry and bonding analysis of tetranuclear transition metal pyrene sandwich complexes. Struct Chem 28:985–997Google Scholar
  31. 31.
    Zendaoui MS, Zouchoune B (2016) Coordination Chemistry of Mixed M(benzene)(cyclopendadienyl) sandwich complexes: electronic properties and bonding analysis. New J Chem 40:2554–2564Google Scholar
  32. 32.
    Zouchoune B, Saiad A (2018) Ligands’ σ-donation and π-backdonation effects on metal-metal bonding in trinuclear [M3(Tr)2(L)3]2+ (M = Fe, Ni, Pd, Pt, Tr = tropylium and L = CO, HCN and C2H4) sandwich compounds: theoretical investigation. Inorg Chim Acta 473:204–215Google Scholar
  33. 33.
    Nail N, Zouchoune B (2017) Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation. Struct Chem 29:725–739Google Scholar
  34. 34.
    Zouchoune B (2018) Stability and possible multiple metal-metal bonding in tetranuclear sandwich complexes of cyclooctatetraene ligand. Struct Chem 29:937–945Google Scholar
  35. 35.
    Zouchoune B, Zendaoui SM, Saillard JY (2018) Why is bis-indenylchromium a dimer? A DFT investigation. J Organmet Chem 858:47–52Google Scholar
  36. 36.
    Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chem Acta 46:1–10Google Scholar
  37. 37.
    Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg Chem 18:1558–1565Google Scholar
  38. 38.
    Cotton FA, Wilkinson G (1998) Advanced Inorganic Chemistry. Wiley, New YorkGoogle Scholar
  39. 39.
    Solomon EI, Lever ABP (2006) Inorganic Electronic Structure and Spectroscopy. Wiley, New JerseyGoogle Scholar
  40. 40.
    Elschenbroich C (2005) Organometallics. Wiley-VCH, WeinheimGoogle Scholar
  41. 41.
    Pruchnik F (1990) Organometallic chemistry of transition metal elements. Springer Science+Business Media, New YorkGoogle Scholar
  42. 42.
    Frenking G, Fröhlich N (2000) The nature of the bonding in transition-metal compounds. Chem Rev 100:717–774PubMedGoogle Scholar
  43. 43.
    Software for Chemistry & Material (SCM) (2016). ADF2016; Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands. Available online:
  44. 44.
    Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree-Fock-Slater calculations I. The computational procedure. Chem Phys 2:41–51Google Scholar
  45. 45.
    te Velde G, Baerends EJ (1992) Numerical integration for polyatomic systems. J Comput Phys 99:84–98Google Scholar
  46. 46.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99:391–403Google Scholar
  47. 47.
    Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham DFT: predicting and understanding chemistry. Rev Comput Chem 15:1–86Google Scholar
  48. 48.
    te Velde G, Bickelhaupt FM, Fonseca Guerra C, van Gisbergen SJA, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931-967.Google Scholar
  49. 49.
    Vosko SD, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Chem 58:1200–1211Google Scholar
  50. 50.
    Becke AD (1986) Density functional calculations of molecular bond energies. Chem Phys 84:4524–4529Google Scholar
  51. 51.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 3:3098–3100Google Scholar
  52. 52.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824Google Scholar
  53. 53.
    Perdew JP (1986) Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 34:7406–7406Google Scholar
  54. 54.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533 Erratum: Phys Rev B 57:14999 (1998)Google Scholar
  55. 55.
    van Lenthe E, Ehlers AW, Bearends EJ (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953Google Scholar
  56. 56.
    Versluis L, Ziegler T (1988) The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J Chem Phys 88:322–329Google Scholar
  57. 57.
    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. Chem Phys 96:9005–9012Google Scholar
  58. 58.
    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. Phys Chem 96:6937–6941Google Scholar
  59. 59.
    Varetto U (2009) Molekel (Swiss National Supercomputing Centre)Google Scholar
  60. 60.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096Google Scholar
  61. 61.
    Weinhold F, Landis CR (2005) Valency and Bonding: a Natural Bond Order Donor Acceptor Perspective. Cambridge University Press, U. K.Google Scholar
  62. 62.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute. University of Wisconsin, Madison Available at: Accessed Feb. 1, 2013Google Scholar
  63. 63.
    Bickelhaupt FM, Bearends EJ (2000) Kohn-Sham density functional chemistry: predictions and understanding chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol. 15. Wiley-VCH, New York, pp 1–86Google Scholar
  64. 64.
    Ehlers AW, Dapprich S, Vyboishchikov SF, Frenking G (1996) Structure and bonding of the transition-metal carbonyl complexes M(CO)5L (M = Cr, Mo, W) and M(CO)3L (M = Ni, Pd, Pt; L = CO, SiO, CS, N2, NO+, CN-, NC-, HCCH, CCH2, CH2, CF2, H2). Organometallics 15:105–117Google Scholar
  65. 65.
    Frenking G, Wichmann K, Fröchlich N, Grobe J, Golla W, Le Van D, Krebs B, Läge M (2002) Nature of the metal−ligand bond in M(CO)5PX3 complexes (M = Cr, Mo, W; X = H, Me, F, Cl): synthesis, molecular structure, and quantum-chemical calculations. Organometallics 21:2921–2930Google Scholar
  66. 66.
    Mitoraj M, Michalak A (2007) Donor–acceptor properties of ligands from the natural orbitals for chemical valence. Organometallics 26:6576–6580Google Scholar
  67. 67.
    Chen Y, Hartmann M, Frenking G (2001) Ligand site preference in iron tetracarbonyl complexes Fe(CO)4L (L = CO, CS, N2, NO+, CN-, NC-, η2-H2, NH3, NF3, PH3, PF3). Z Anorg Allg Chem 627:985–998Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unité de Recherche de Chimie de l’Environnement et Moléculaire StructuraleUniversité Constantine (Mentouri Constantine)ConstantineAlgeria
  2. 2.Université Constantine 3ConstantineAlgeria
  3. 3.Laboratoire de Chimie appliquée et Technologie des MatériauxUniversité Larbi Ben M’Hidi - Oum El BouaghiOum El BouaghiAlgeria

Personalised recommendations