Structural Chemistry

, Volume 30, Issue 6, pp 2151–2158 | Cite as

Nitrogen substitution effect on hydrogen adsorption properties of Ti-decorated benzene

  • Priyanka Tavhare
  • Ajay ChaudhariEmail author
Original Research


Ab initio calculations are performed to study hydrogen storage properties of Ti-doped benzene and Ti-doped nitrogen-substituted benzene complexes. Two of the carbon atoms in benzene are replaced by two nitrogen atoms. Two nitrogen atoms are substituted either at 1-2, 1-3, or 1-4 positions of a benzene ring and named as BN1-2Ti, BN1-3Ti, and BN1-4Ti, respectively. Maximum four, four, three, and four H2 molecules get adsorbed on C6H6Ti, BN1-2Ti, BN1-3Ti, and BN1-4Ti complexes respectively with respective H2 uptake capacity of 6.02, 5.84, 4.45, and 5.84 wt%. The positive Gibbs free energy corrected H2 adsorption energy values obtained for all these complexes at ambient conditions indicate that the formation of these complexes at room temperature is thermodynamically favorable. Temperature- and pressure-dependent adsorption energy calculations show that the H2 adsorption on all these complexes is feasible over a wide range of temperature and pressure. The gap between the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbital (LUMO) is found to be greater than 5 eV for all the complexes indicating stability of these complexes. The H2 molecules interact more strongly with Ti-doped nitrogen-substituted benzene than the Ti-doped benzene that results in higher H2 desorption temperature obtained using van 't Hoff equation for the former than the latter. The density of states plots have been used to understand the H2 adsorption mechanism.


Hydrogen adsorption Nitrogen-substituted benzene Desorption temperature PDOS 



Financial support to Priyanka Tavahre from Department of Science and Technology, India under Womens Scientist Scheme - A (Grand No: SR/WOS-A/PM-33/2017) is thankfully acknowledged. Thanks to The Institute of Science, Mumbai. Bioinformatics Resources and Applications Facility (BRAF) from C-DAC, Pune is thankfully acknowledged.

Compliance with ethical standards

Ethical statement

The work has not been submitted elsewhere for publication. The claimed new results express our own findings.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jena P (2011). J Phys Chem Lett 2:206CrossRefGoogle Scholar
  2. 2.
    Huang B, Lee H, Duan W, Ihm J (2008). Appl Phys Lett 93:063107CrossRefGoogle Scholar
  3. 3.
    Kolmann SJ, Chan B, Jordan MJT (2008). Chem Phys Lett 467:126CrossRefGoogle Scholar
  4. 4.
    Lee H, Ihm J, Cohen ML, Louie SG (2010). Nano Lett 10:793CrossRefGoogle Scholar
  5. 5.
    Anafcheh M, Naderi F (2018). Int J Hydrog Energy 43:12271CrossRefGoogle Scholar
  6. 6.
    Yildirim T, Iniguez J, Ciraci S (2005). Phys Rev B 72:153403CrossRefGoogle Scholar
  7. 7.
    Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012). Int J Hydrog Energy 37:5114CrossRefGoogle Scholar
  8. 8.
    Mei F, Ma X, Bie Y, Xu G (2017). J Comp Chem 16:1750065Google Scholar
  9. 9.
    Weck PF, Dhilip Kumar TJ, Kim E, Balakrishnan N (2007). J Chem Phys 126:094703CrossRefGoogle Scholar
  10. 10.
    Dong LX, Hong Z, Jian TY, Dong WW, Yang WC (2012). Chin J Struct Chem 31:459Google Scholar
  11. 11.
    Kalamse V, Wadnerkar N, Chaudhari A (2013). Energy 49:469CrossRefGoogle Scholar
  12. 12.
    Phillips AB, Shivaram BS, Myneni GR (2012). Int J Hydrog Energy 37:1546CrossRefGoogle Scholar
  13. 13.
    Sun Q, Wang Q, Jena P, Kawazoe Y (2005). J Am Chem Soc 127:14582CrossRefGoogle Scholar
  14. 14.
    Durgun E, Ciraci S, Yildirim T (2008). Phys Rev B 77:085405CrossRefGoogle Scholar
  15. 15.
    Yuan L, Chen Y, Kang L, Zhang C, Wang D, Wang C, Zhang M, Wu X (2017). App Sur Sci 399:463CrossRefGoogle Scholar
  16. 16.
    Huang X, Zhao YJ, Liao JH, Yang XB (2016). Int J Hydrog Energy 41:11275CrossRefGoogle Scholar
  17. 17.
    Deshmukh A, Konda R, Kalamse V, Chaudhari A (2016). RSC Adv 6:47033CrossRefGoogle Scholar
  18. 18.
    Tavhare P, Titus E, Chaudhari A (2018). Int J Hydrog Energy 44:345CrossRefGoogle Scholar
  19. 19.
    Tavhare P, Deshmukh A, Chaudhari A (2017). Phys Chem Chem Phys 19:681CrossRefGoogle Scholar
  20. 20.
    Lin IH, Tong YJ, Hsieh HJ, Huang HW, Chen HT (2016). Int J Energy Res 40:230CrossRefGoogle Scholar
  21. 21.
    Huang HW, Hsieh HJ, Lin IH, Tong YJ, Chen HT (2015). J Phys Chem C 119:7662CrossRefGoogle Scholar
  22. 22.
    Sankaran M, Viswanathan B (2006). Carbon 44:2816CrossRefGoogle Scholar
  23. 23.
    Wang L, Yang FH, Yang RT (2009). AIChE J 55:1823CrossRefGoogle Scholar
  24. 24.
    He H, Chen X, Zou W, Li R (2018). Int J Hydrog Energy 43:2823CrossRefGoogle Scholar
  25. 25.
    Wang L, Yang RT (2009). J Phys Chem C 113:21883CrossRefGoogle Scholar
  26. 26.
    Omidvar A (2017). Chem Phys 493:85CrossRefGoogle Scholar
  27. 27.
    Srinivasu K, Ghosh SK (2012). J Phys Chem C 116:25184CrossRefGoogle Scholar
  28. 28.
    Srivastava AK, Misra N (2015). Chem Phys Lett 625:5CrossRefGoogle Scholar
  29. 29.
    Ewels CP, Glerup M (2005). J Nanosci Nanotechnol 5:1345CrossRefGoogle Scholar
  30. 30.
    Ayala P, Arenal R, Rummeli M, Rubio A, Pichler T (2010). Carbon 48:575CrossRefGoogle Scholar
  31. 31.
    Møller C, Plesset MS (1934). Phys Rev 46:618CrossRefGoogle Scholar
  32. 32.
    O’Boyle NM, Tenderholt AL, Langner KM (2008). J Comput Chem 29:839CrossRefGoogle Scholar
  33. 33.
    Ma LJ, Jia J, Wu HS (2015). Chem Phys 457:57CrossRefGoogle Scholar
  34. 34.
    Lide DR (1994) CRC handbook of chemistry and physics75th edn. CRC Press, New YorkGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford CTGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe Institute of ScienceMumbaiIndia
  2. 2.Department of PhysicsGovt. Vidarbha Institute of Science and HumanitiesAmravatiIndia

Personalised recommendations