Structural Chemistry

, Volume 30, Issue 6, pp 2135–2149 | Cite as

Nitrogen monoxide storage and sensing applications of transition metal–doped boron nitride nanotubes: a DFT investigation

  • Suphawarat Phalinyot
  • Chanukorn Tabtimsai
  • Banchob WannoEmail author
Original Research


The structural properties, electronic properties, and adsorption abilities for nitrogen monoxide (NO) molecule adsorption on pristine and transition metal (TM = V, Cr, Mn, Nb, Mo, Tc, Ta, W, and Re) doping on B or N site of armchair (5,5) single-walled boron nitride nanotube (BNNT) were investigated using the density functional theory method. The binding energies of TM-doped BNNTs reveal that the Mo atom doping exhibits the strongest binding ability with BNNT. In addition, the NO molecule weakly interacts with the pristine BNNT, whereas it has a strong adsorption ability on TM-doped BNNTs. The increase in the adsorption ability of NO molecule onto the TM-doped BNNTs is due to the geometrical deformation on TM doping site and the charge transfer between TM-doped BNNTs and NO molecule. Moreover, a significant decrease in energy gap of the BNNT after TM doping is expected to be an available strategy for improving its electrical conductivity. These observations suggest that NO adsorption and sensing ability of BNNT could be greatly improved by introducing appropriate TM dopant. Therefore, TM-doped BNNTs may be a useful guidance to be storage and sensing materials for the detection of NO molecule.


Adsorption Boron nitride nanotube DFT Nitrogen monoxide Transition metal 



The authors greatfully acknowledge the Supramolecular Chemistry Research Unit (SCRU), Department of Chemistry, Faculty of Science, Mahasarakham University and the Computational Chemistry Center for Nanotechnology (CCCN), Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University for the facilities provided.

Funding information

This study received partial financial support from the Center of Excellence for Innovation in Chemistry (PERCH−CIC), Department of Chemistry, Faculty of Science, Mahasarakham University, and Rajabhat Buriram University.

Supplementary material

11224_2019_1339_MOESM1_ESM.doc (12.3 mb)
ESM 1 (DOC 12584 kb)


  1. 1.
    Esrafili MD, Heydari S (2018) Carbon−doped boron−nitride fullerenes as efficient metal−free catalysts for oxidation of SO2 : a DFT study. Struct Chem 29:275Google Scholar
  2. 2.
    Muniyandi S, Sundaram R, Kar T (2018) Aluminum doping makes boron nitride nanotubes (BNNTs) an attractive adsorbent of hydrazine (N2H4). Struct Chem 29:375Google Scholar
  3. 3.
    Wanno B, Tabtimsa C (2014) A DFT investigation of CO adsorption on VIIIB transition metal–doped graphene sheets. Superlattice Microst 67:110Google Scholar
  4. 4.
    Roy S, Baiker A (2009) NOx storage–reduction catalysis : from mechanism and materials properties to storage–reduction performance. Chem Rev 109:4054PubMedGoogle Scholar
  5. 5.
    Aplincourt P, Bohr F, Ruiz–Lopez MF (1998) Density functional studies of compounds involved in atmospheric chemistry: nitrogen oxides. J Mol Struct 426:95Google Scholar
  6. 6.
    Yamini Y, Moradi M (2014) Influence of topological defects on the nitrogen monoxide-sensing characteristics of graphene–analogue BN. Sensors Actuators B Chem 197:274Google Scholar
  7. 7.
    Promthong N, Nunthaboot N, Wanno B (2015) A DFT study of CO and NO adsorptions on AlN–, AlP–, and ZnO–doped graphene nanosheets. Z Phys Chem 230:267Google Scholar
  8. 8.
    Chandiramouli R, Srivastava A, Nagarajan V (2015) NO adsorption studies on silicene nanosheet : DFT investigation. Appl Surf Sci 351:662Google Scholar
  9. 9.
    Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8, 0) boron nitride nanotube: a first–principles study. Phys E 76:47Google Scholar
  10. 10.
    Esrafili MD, Saeidi N (2016) DFT calculations on the catalytic oxidation of CO over Si–doped (6,0) boron nitride nanotubes. Struct Chem 27:595Google Scholar
  11. 11.
    Singla P, Singhal S, Goel N (2013) Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface. Appl Surf Sci 283:881Google Scholar
  12. 12.
    Esrafili MD, Saeidi N (2017) N2O + SO2 reaction over Si– and C–doped boron nitride nanotubes: a comparative DFT study. Appl Surf Sci 403:43Google Scholar
  13. 13.
    Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081Google Scholar
  14. 14.
    Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335Google Scholar
  15. 15.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966PubMedGoogle Scholar
  16. 16.
    Zhi C, Bando Y, Tan C, Golberg D (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun 135:67Google Scholar
  17. 17.
    Wang J, Kayastha VK, Yap YK, Fan Z, Lu JG, Pan Z, Ivanov IN, Puretzky AA, Geohegan DB (2005) Low temperature growth of boron nitride nanotubes on substrates. Nano Lett 5:1Google Scholar
  18. 18.
    Juárez AR, Anota EC, Cocoletzi HH, Ramírez JFS, Castro M (2017) Stability and electronic properties of armchair boron nitride/carbon nanotubes. Fuller Nanotub Car N 12:716Google Scholar
  19. 19.
    Chopra NG, Zettl A (1998) Measurement of the elastic modulus of a multi−wall boron nitride nanotube. Solid State Commun 105:297Google Scholar
  20. 20.
    Lan H, Ye L, Zhang S, Peng L (2009) Transverse dielectric properties of boron nitride nanotubes by ab initio electric field calculations. Appl Phys Lett 94:183110Google Scholar
  21. 21.
    Chang CW, Fennimore AM, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A, Zettl A (2006) Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys Rev Lett 97:85901Google Scholar
  22. 22.
    Chen Y, Zou J, Campbell SJ, Caer GL (2004) Boron nitride nanotubes : pronounced resistance to oxidation. Appl Phys Lett 84:2430Google Scholar
  23. 23.
    Zhi C, Bando Y, Tang C, Xie R, Sekiguchi T, Golberg D (2005) Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J Am Chem Soc 127:15996PubMedGoogle Scholar
  24. 24.
    Zhi C, Bando Y, Tang C, Golberg D (2006) Engineering of electronic structure of boron–nitride nanotubes by covalent functionalization. Phys Rev B 74:153413Google Scholar
  25. 25.
    Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ahmadi A, Beheshtian J, Hadipour N (2011) Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct Chem 22:183Google Scholar
  27. 27.
    Lauret JS, Arenal R, Ducastelle F, Loiseau A, Cau M, Attal–Tretout B, Rosencher E, Goux–Capes L (2005) Optical transitions in single–wall boron nitride nanotubes. Phys Rev Lett 94:37405Google Scholar
  28. 28.
    Soltani A, Raz SG, Rezaei VJ, Dehno Khalaji A, Savar M (2012) Ab initio investigation of Al– and Ga–doped single–walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci 263:619Google Scholar
  29. 29.
    Movlarooy T, Fadradi MA (2018) Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing. Chem Phys Lett 700:7Google Scholar
  30. 30.
    Beheshtian J, Ahmadi A, Bagheri Z (2012) Detection of phosgene by Sc–doped BN nanotubes : a DFT study. Sensors Actuators B Chem 171–172:846Google Scholar
  31. 31.
    Deng Z, Zhang J, Xu K (2015) First–principles study of SO2 molecule adsorption on the pristine and Mn–doped boron nitride nanotubes. Appl Surf Sci 347:485Google Scholar
  32. 32.
    Tang C, Bando Y, Ding X, Qi S, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550PubMedGoogle Scholar
  33. 33.
    Xie Y, Zhang JM (2011) First–principles study on substituted doping of BN nanotubes by transition metals V, Cr, and Mn. Comput Theor Chem 976:215Google Scholar
  34. 34.
    Xie Y, Huo YP, Zhang JM (2012) First–principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl Surf Sci 258:6391Google Scholar
  35. 35.
    Wang R, Zhang D, Liu C (2014) The germanium–doped boron nitride nanotube serving as a potential resource for the detection of carbon monoxide and nitric oxide. Comput Mater Sci 82:361Google Scholar
  36. 36.
    Mananghaya M, Yu D, Santos GN (2016) Hydrogen adsorption on boron nitride nanotubes functionalized with transition metals. Int J Hydrog Energy 41:13531Google Scholar
  37. 37.
    Azizi K, Salabat K, Seif A (2014) Methane storage on aluminum–doped single wall BNNTs. Appl Surf Sci 309:54Google Scholar
  38. 38.
    Becke AD (2014) A new mixing of Hartree–Fock and local density–functional theories. J Chem Phys 98:1372Google Scholar
  39. 39.
    Becke AD (1988) Density–functional exchange−energy approximation with correct asymptotic behavior. Phys Rev A 38:3098Google Scholar
  40. 40.
    Becke AD (1993) Density–functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648Google Scholar
  41. 41.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270Google Scholar
  42. 42.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284Google Scholar
  43. 43.
    Buasaeng P, Rakrai W, Wanno B, Tabtimsai C (2017) DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc–, Ti–, V–, and Cr–doped single–walled carbon nanotubes. Appl Surf Sci 400:506Google Scholar
  44. 44.
    Baei MT, Bagheri Z, Peyghan AA (2013) Transition metal atom adsorptions on a boron nitride nanocage. Struct Chem 24:1039Google Scholar
  45. 45.
    Kaewruksa B, Ruangpornvisuti V (2011) Theoretical study on the adsorption behaviors of H2O and NH3 on hydrogen–terminated ZnO nanoclusters and ZnO graphene–like nanosheets. J Mol Struct 994:276Google Scholar
  46. 46.
    Vessally E, Dehbandi B, Edjlali L (2016) DFT study on the structural and electronic properties of Pt–doped boron nitride nanotubes. Russ J Phys Chem A 90:1217Google Scholar
  47. 47.
    Foster JP, Weinhold F (1980) Natural hybrid orbitals natural hybrid orbitals. J Am Chem Soc 102:7211Google Scholar
  48. 48.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, AleLaham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) GAUSSIAN 09, Revision A.02. Gaussian Inc, Wallingford CTGoogle Scholar
  49. 49.
    Flükiger P, Lüthi HP, Portmann S (2000) MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno, SwitzerlandGoogle Scholar
  50. 50.
    O'Boyle NM, Tenderholt AL, Langner KM (2008) Software news and updates cclib : a library for package–independent computational chemistry algorithms. J Comput Chem 29:839PubMedGoogle Scholar
  51. 51.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801Google Scholar
  52. 52.
    Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104Google Scholar
  53. 53.
    Parr RG, Szentṕaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922Google Scholar
  54. 54.
    Baierle RJ, Schmidt TM, Fazzio A (2007) Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. Solid State Commun 142:49Google Scholar
  55. 55.
    Esrafili MD, Saeidi N (2015) Si–embedded boron-nitride nanotubes as an efficient and metal-free catalyst for NO oxidation. Superlattice Microst 81:7Google Scholar
  56. 56.
    Tontapha S, Ruangpornvisuti V, Wanno B (2013) Density functional investigation of CO adsorption on Ni-doped single-walled armchair (5,5) boron nitride nanotubes. J Mol Model 19:239PubMedGoogle Scholar
  57. 57.
    Arenal R, Ferrari AC, Reich S, Wirtz L, Mevellec JY, Lefrant S, Rubio A, Loiseau A (2006) Raman spectroscopy of single–wall boron nitride nanotubes. Nano Lett 6:1812PubMedGoogle Scholar
  58. 58.
    Dong Q, Li XM, Tian WQ, Huang XR, Sun CC (2010) Theoretical studies on the adsorption of small molecules on Pt-doped BN nanotubes. J Mol Struct 948:83Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Excellence for Innovation in Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of ScienceMahasarakham UniversityMaha SarakhamThailand
  2. 2.Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and TechnologyRajabhat Maha Sarakham UniversityMaha SarakhamThailand

Personalised recommendations