Structural Chemistry

, Volume 30, Issue 6, pp 2271–2277 | Cite as

The reaction mechanism study on the decarbonylation of 2-methyl-2-propenal assisted by hydrogen chloride, water, or sulfur acid

  • Benni Du
  • Weichao ZhangEmail author
Original Research


The catalytic decarbonylation reaction mechanisms of 2-methyl-2-propenal in the presence of hydrogen chloride (HCl), water (H2O), or sulfuric acid (H2SO4) have been investigated theoretically for the first time. Both concerted and stepwise mechanisms have been considered. Compared with uncatalyzed reaction, the transition state energy is decreased by 90.46, 26.35, or 146.74 kJ/mol when the reaction is carried out with HCl, H2O, or H2SO4 as a catalyst, respectively. Our calculations demonstrate that the presence of HCl can reduce the transition state energy dramatically and make the decarbonylation of 2-methyl-2-propenal to be carried out at much lower temperatures, which is consistent with the experimental result. Moreover, the lowest activation energy assisted by H2SO4 suggests that H2SO4 may have better catalytic ability than that of HCl for the decarbonylation of 2-methyl-2-propenal, and our calculational results may be useful for future experimental studies on the title reaction.


Decarbonylation 2-methyl-2-propenal Hydrogen chloride Sulfuric acid 


Funding information

This work is jointly supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (contract grant number 10KJB150017), Doctoral Scientific Research Foundation of Jiangsu Normal University (contract grant number: 13XLR003), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1338_MOESM1_ESM.pdf (9.3 mb)
ESM 1 (PDF 9533 kb)


  1. 1.
    Klein R, Scheer MD, Schoen LJ (1956). J. Am. Chem. Soc. 78:50–52Google Scholar
  2. 2.
    Schecker HG, Jost W (1969). Ber. Bunsenges. Phys. Chem. 73:521–526Google Scholar
  3. 3.
    Chen CJ, McKenney DJ (1972). Can. J. Chem. 50:992–998Google Scholar
  4. 4.
    Freeman JR, Danby JC, Hinshelwood CN (1958). Proc. Roy. Soc. London, Ser. A 245:456–469Google Scholar
  5. 5.
    Ho SK (1963). Proc. Roy. Soc. London, Ser. A 276:278–292Google Scholar
  6. 6.
    Trenwith AB (1963). J. Chem. Soc.:4426–4443Google Scholar
  7. 7.
    Dexter RW, Trenwith AB (1964). J. Chem. Soc.:5459–5464Google Scholar
  8. 8.
    Eusuf M, Laidler KJ (1964). Can. J. Chem. 42:1851–1860Google Scholar
  9. 9.
    Imai N, Toyama O (1967). Bull. Chem. Soc. Jpn. 40:81–94Google Scholar
  10. 10.
    Laidler KJ, Lui MTH (1967). Proc. R. Soc. London, Ser. A 297:365–375Google Scholar
  11. 11.
    Liu MTH (1968). Can. J. Chem. 46:479–490Google Scholar
  12. 12.
    Bardi I, Márta F (1973). Acta. Phys. Chem. 19:227–244Google Scholar
  13. 13.
    Bardi I, Márta F (1974). Acta. Phys. Chem. 20:47–65Google Scholar
  14. 14.
    Knewstubb PF (1989). J. Chem. Soc. Faraday Trans. 2(85):671–679Google Scholar
  15. 15.
    Szabó ZG, Márta F (1961). J. Am. Chem. Soc. 83:768–773Google Scholar
  16. 16.
    Volman DH, Brinton RK (1954). J. Chem. Phys. 22:929–939Google Scholar
  17. 17.
    Laidler KJ, Eusuf M (1965). Can. J. Chem. 43:268–277Google Scholar
  18. 18.
    Vasiliou A, Kim J, Ormond T, Piech K, Urness K, Scheer A, Robichaud D, Mukarakate C, Nimlos M, Daily J, Guan Q, Carstensen H, Ellison G (2013). J. Chem. Phys. 139:104310–114311PubMedGoogle Scholar
  19. 19.
    Rosado-Reyes CM, Tsang W (2014). Int. J. Chem. Kinet. 46:285–293Google Scholar
  20. 20.
    Smith RE, Hinshelwood CN (1940). Proc. Roy. Soc. London, Ser. A 175:131–142Google Scholar
  21. 21.
    Smith RE, Hinshelwood CN (1942). Proc. Roy. Soc. London, Ser A 180:253–256Google Scholar
  22. 22.
    Ingold KU, Lossing FP (1953). Can. J. Chem. 31:30–41Google Scholar
  23. 23.
    Smith RE (1940). Trans. Faraday. Soc. 2 36:983–987Google Scholar
  24. 24.
    Grela MA, Colussi AJ (1986). J. Phys. Chem. 90:434–437Google Scholar
  25. 25.
    Crawford RJ, Lutener S, Tokunaga H (1977). Can. J. Chem. 55:3951–3954Google Scholar
  26. 26.
    Chabán OY, Domínguez RM, Herize A, Tosta M, Cuenca A, Chuchani G (2007). J. Phys. Org. Chem. 20:307–312Google Scholar
  27. 27.
    Ruiz P, Castro M, Lopez S, Zapata Á, Quijano J, Notario R (2016). Struct. Chem. 27:1373–1381Google Scholar
  28. 28.
    Julioa LL, Lezamaa J, Maldonadoa A, Moraa JR, Chuchania G (2014). J. Phys. Org. Chem. 27:450–455Google Scholar
  29. 29.
    Julioa LL, Moraa JR, Maldonadoa A, Chuchania G (2015). J. Phys. Org. Chem. 28:261–265Google Scholar
  30. 30.
    Erastova V, Rodríguez-Otero J, Cabaleiro-Lago EM, Peña-Gallego Á (2011). J. Mol. Model. 17:21–26PubMedGoogle Scholar
  31. 31.
    Teixeira-Dias JJC, Furlani TR, Shores KS, Garvey JF (2003). Phys. Chem. Chem. Phys. 5:5063–5069Google Scholar
  32. 32.
    Takahashi K, Kramer ZC, Vaida V, Skodje RT (2007). Phys. Chem. Chem. Phys. 9:3864–3871PubMedGoogle Scholar
  33. 33.
    Buszek RJ, Francisco JS (2009). J. Phys. Chem. A 113:5333–5337PubMedGoogle Scholar
  34. 34.
    Tavakol H (2011). Struct. Chem. 22:1165–1177Google Scholar
  35. 35.
    Valadbeigi Y, Farrokhpour H (2015). Struct. Chem. 26:539–545Google Scholar
  36. 36.
    Buszek RJ, Sinha A, Francisco JS (2011). J. Am. Chem. Soc. 133:2013–2015PubMedGoogle Scholar
  37. 37.
    Torrent-Sucarrat M, Francisco JS, Anglada JM (2012). J. Am. Chem. Soc. 134:20632–20644PubMedGoogle Scholar
  38. 38.
    Elm J, Bilde M, Mikkelsen KV (2013). J. Phys. Chem. A 117:6695–6701PubMedGoogle Scholar
  39. 39.
    Zhang WC, Du BN, Qin ZL (2014). J. Phys. Chem. A 118:4797–4807PubMedGoogle Scholar
  40. 40.
    Karton A (2014). Chem. Phys. Lett. 592:330–333Google Scholar
  41. 41.
    Sarrami F, Mackenzie-Rae FA, Karton A (2018). Int. J. Quantum Chem. 118:25599–25608Google Scholar
  42. 42.
    Gonzalez C, Schlegel HB (1989). J. Chem. Phys. 90:2154–2161Google Scholar
  43. 43.
    Gonzalez C, Schlegel HB (1990). J. Phys. Chem. 94:5523–5527Google Scholar
  44. 44.
    Pople JA, Head-Gordon M, Raghavachari K (1987). J. Chem. Phys. 87:5968–5975Google Scholar
  45. 45.
    Merrick JP, Moran D, Radom L (2007). J. Phys. Chem. A 111:11683–11700PubMedGoogle Scholar
  46. 46.
    Lee TJ, Taylor PR (1989). Int. J. Quant. Chem. Symp. 23:199–207Google Scholar
  47. 47.
    Rienstra-Kiracofe JC, Allen WD, Schaefer III HF (2000). J. Phys. Chem. A 104:9823–9840Google Scholar
  48. 48.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian Inc., WallingfordGoogle Scholar
  49. 49.
    Luchinskii GP (1956). Zh. Fiz. Khim. 30:96–97Google Scholar
  50. 50.
    Myers RT (1983). J. Chem. Educ. 60:1017–1018Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Materials ScienceJiangsu Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations