Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2245–2255 | Cite as

Anomeric effect in pyranose-ring derivatives containing carbon, silicon, and germanium as anomeric centers: an ab initio systematic study

  • P. G. Rodríguez OrtegaEmail author
  • M. Montejo
  • M. Sánchez Valera
  • J. J. López González
Original Research
  • 52 Downloads

Abstract

We have performed a systematic conformational analysis focused on the evaluation of the anomeric effect (AE) in a series of pyranose derivatives containing carbon, silicon, and germanium as anomeric centers (c*) using the MP2/aug-cc-pVDZ level of theory together with natural bond orbital (NBO) electronic structure calculations. Although, both endo- and exo-anomeric effects operate within all the systems studied; the conformational preference towards the axial (α) form can be explained in terms of the incidence of the endo-anomeric effect. The magnitude calculated for the AE is considerably higher for compounds containing carbon as c*. On the other hand, the lower magnitude of the hyperconjugative delocalizations towards antibonding exocyclic anomeric orbitals in Si- and Ge-containing compounds can be justified by the availability of energetically accessible vacant d-type orbitals in these atoms. While the conformational preference in the carbon group is purely related to a higher anomeric hyperconjugation in the α conformers, steric and electrostatic factors dictate the conformational α arrangement in the Si- and Ge-containing compounds. Implicit consideration of the solvent (water) produces a notable increase in the population of the β anomers in some of the systems into study. However, the results of NBO energy partition study performed reveal that the merely observation of a change in the α/β ratio for a given system upon solvation should not be taken as an indication of a predominant role of electrostatic effects as the origin for their anomeric preference.

Keywords

Anomeric effect Hyperconjugation Silicon Germanium Conformational analysis 

Notes

Acknowledgements

We thank the “Centro de Servicios de Informática y Redes de Comunicaciones” (CSIRC), Universidad de Granada, for providing computational resources.

Funding information

M. S. V. is funded by the Spanish Andalusian Government for a contract supporting an internship in the Physical and Analytical Chemistry Department at the University of Jaén.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1336_MOESM1_ESM.docx (178 kb)
ESM 1 (DOCX 177 kb)

References

  1. 1.
    Juaristi E, Cuevas G (1995) The anomeric effect. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Lemieux RU (1971). Pure Appl Chem 25:527Google Scholar
  3. 3.
    Wolfe S, Rauk A, Tel LM, Csizmadia IG (1971) J Chem Soc B:136–145Google Scholar
  4. 4.
    Salzner U, Schleyer P (1993) J Am Chem Soc 115:10231–10236Google Scholar
  5. 5.
    Reed E, Schade C, von Ragué Schleyer P, Vishnu Kamath P, Jayaraman Chandrasekhar J (1988). J Chem Soc Commun:67–69Google Scholar
  6. 6.
    Geng S, Ren Y, Wong NB, Li WK (2012). J Phys Chem A 116:3952–3959PubMedGoogle Scholar
  7. 7.
    Azarakhshi F, Khaleghian M, Farhadyar N (2015). Lett Org Chem 12(7):516–522Google Scholar
  8. 8.
    Kirby J (1983) The anomeric effect and related stereoelectronic effects at oxygen. Springer-Verlag Berlin Heidelberg, BerlinGoogle Scholar
  9. 9.
    Reed E, von Ragué Schleyer P (1988). Inorg Chem 88(6):899–926Google Scholar
  10. 10.
    Reed E, von Ragué Schleyer P (1990). J Am Chem Soc 112(4):1434–1445Google Scholar
  11. 11.
    Bauerfeldt GF, Cardozo TM, Pereira MS, da Silva CO (2013). Org Biomol Chem 11:299PubMedGoogle Scholar
  12. 12.
    Cortés-Guzmán F, Hernández-Trujillo J, Cuevas G (2010). Phys Chem Chem Phys 12:13261PubMedGoogle Scholar
  13. 13.
    Edward JT (1993) Anomeric effect how it came to be postulated, ACS symposium series. American Chemical Society, WashingtonGoogle Scholar
  14. 14.
    Anderson CB, Sepp DT (1967). J Organomet Chem 32:607Google Scholar
  15. 15.
    Romers C, Altona C, Buys HR, Havinga E (1969). Top Stereochem 4:39Google Scholar
  16. 16.
    Fuchs B, Ellencweig A, Tartakovsky E, Aped P (1986). Angew Chem 25:287Google Scholar
  17. 17.
    Wolfe S, Pinto BM, Varma V, Leung RYN (1990). Can J Chem 68:1051Google Scholar
  18. 18.
    Schelyer PVR, Kos AJ (1983). Tetrahedron 39:1141Google Scholar
  19. 19.
    Lemieux RU, Pavia AA, Martin JC, Wantanabe KA (1969). Can J Chem 47:4427Google Scholar
  20. 20.
    Praly JP, Lemieux RU (1987). Can J Chem 65:213Google Scholar
  21. 21.
    Cramer CJ (1992). J Organomet Chem 57:7034Google Scholar
  22. 22.
    Ha SH, Gao J, Tidor B, Brady JW, Karplus MJ (1991). Am Chem Soc 113:1553Google Scholar
  23. 23.
    Wang YF, Wu W, Mo Y (2014). J Organomet Chem 79:1571–1581Google Scholar
  24. 24.
    Rodríguez Ortega PG, Montejo M, López González JJ (2016). Chem Phys Chem 17(4):530–540Google Scholar
  25. 25.
    Perrin L, Armstrong KB, Fabian MA (1994). J Am Chem Soc 116:715Google Scholar
  26. 26.
    Cocinero J, Çarçabal P, Vaden TD, Simons JP, Davis BG (2011). Nature 469:76–79PubMedGoogle Scholar
  27. 27.
    Cocinero J, Çarçabal P, Vaden TD, Simons JP, Davis BG (2011). J Am Chem Soc 133:4548PubMedGoogle Scholar
  28. 28.
    Wang YF, Wu W, Mo Y (2011). Am Chem Soc 133:13731Google Scholar
  29. 29.
    Apeloig Y, Stanger A (1988). J Organomet Chem 346:305Google Scholar
  30. 30.
    Chataoui H, Choukri H, Maatallah M, Cherqaoui D, Jarid A (2017). Curr Appl Phys 17:1310–1315Google Scholar
  31. 31.
    Lutters D, Merk A, Schmidtmann M, Müller T (2016). Inorg Chem 55(17):9026–9032PubMedGoogle Scholar
  32. 32.
    Nijesh K, Rojisha VC, De S, Parameswaran P (2015). Dalton Trans 44(15):4693–4706PubMedGoogle Scholar
  33. 33.
    Akbari A, Golzadeh B, Arshadi S, Kassaee MZ (2015). RSC Adv 5(54):43319–43327Google Scholar
  34. 34.
    Rodríguez Ortega PG, Montejo M, Marchal Ingraín A, Márquez F, López Gonzáles JJ (2012). Vib Spectrosc 58:79–86Google Scholar
  35. 35.
    Rodríguez Ortega PG, Montejo M, Marchal Ingraín A, Márquez F, López Gonzáles JJ (2012). J Sol-Gel Sci Technol 61:258–267Google Scholar
  36. 36.
    Rodríguez Ortega PG, Montejo M, Marchal Ingraín A, Márquez F, López Gonzáles JJ (2012). J Sol-Gel Sci Technol 64:54–66Google Scholar
  37. 37.
    Rodríguez Ortega PG, Montejo M, López González JJ (2013). J Mol Model 19:4293–4304PubMedGoogle Scholar
  38. 38.
    Tacke R, Merget M, Bertermann R, Bernd M, Beckers T, Reissmann T (2000). Organometallics 19:3486–3497Google Scholar
  39. 39.
    Sieburth SM, Chen CA (2006) Eur J Org Chem 2:311–322Google Scholar
  40. 40.
    Mortensen M, Husmann R, Veri E, Bolm C (2009). Chem Soc 38:1002–1010Google Scholar
  41. 41.
    Rémond E, Martin C, Martinez J, Cavelier F (2016). Chem Rev:11654–11684Google Scholar
  42. 42.
    Alabugin V, Gilmore KM, Peterson P (2011). WIREs Comput Mol Sci 1:109–141Google Scholar
  43. 43.
    Alabugin V (2016) Stereoelectronics effects: a bridge between structure and reactivity. Wiley-Blackwell, OxfordGoogle Scholar
  44. 44.
    Becke D (1993). J Chem Phys 98:5648–5652Google Scholar
  45. 45.
    Lee YW, Parr RG (1988). Phys Rev B 37:785–789Google Scholar
  46. 46.
    Frisch MJ, Head-Gordon M, Pople JA (1990). Chem Phys Lett 166:275–280Google Scholar
  47. 47.
    Frisch MJ, Head-Gordon M, Pople JA (1990). Chem Phys Lett 166:281–289Google Scholar
  48. 48.
    Head-Gordon M, Pople JA, Frisch MJ (1988). Chem Phys Lett 153:503–506Google Scholar
  49. 49.
    Saebø S, Almlöf J (1989). Chem Phys Lett 154:83–89Google Scholar
  50. 50.
    Head-Gordon M, Head-Gordon T (1994). Chem Phys Lett 220:122–128Google Scholar
  51. 51.
    Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724Google Scholar
  52. 52.
    Dunning Jr TH (1989). J Chem Phys 90:1007–1023Google Scholar
  53. 53.
    Scalmani FMJ (2010). J Chem Phys 132:114110PubMedGoogle Scholar
  54. 54.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian Inc, WallingfordGoogle Scholar
  55. 55.
    Carpenter JE, Weinhold F (1988). J Mol Struct (THEOCHEM) 169:41–62Google Scholar
  56. 56.
    Glendening D, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  57. 57.
    Dabbagh A, Naderi M, Chermahini AN (2011). Carbohydr Res 346:1047–1056PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical and Analytical Chemistry, Faculty Experimental SciencesUniversity of JaénJaénSpain

Personalised recommendations