Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2123–2133 | Cite as

Structure-based virtual screening to identify inhibitors against Staphylococcus aureus MurD enzyme

  • Mohammed Afzal AzamEmail author
  • Srikanth Jupudi
Original Research

Abstract

The MurD enzyme of Staphylococcus aureus is an attractive drug target as it is essential and ubiquitous in bacteria but absent in mammalian cells. In the present study, we performed in silico high-throughput virtual screening with small molecule library of 1.60 million compounds to identify potential hits. We used S. aureus modeled MurD protein for this purpose and to find the best leads, dock complexes were further subjected to the extra-precision docking and binding free energy calculations by MM-GBSA approach. It is evident that van der Waals and Coulomb energy terms are major favorable contributors while electrostatic solvation energy term strongly disfavors the binding of ligands to the S. aureus MurD enzyme. The inhibitory activity of two selected virtual hits H5 and H10 was performed against S. aureus MurD enzyme using malachite green assay. In in vitro antibacterial screening, compound H5 inhibited the growth of S. aureus NCIM 5021, S. aureus NCIM 5022, and methicillin-resistant S. aureus (MRSA strain 43300) at high concentrations while the other tested compound H10 was inactive against all the tested strains. In order to validate the stability of inhibitor-protein complex, compound H5 with the highest inhibitory against S. aureus MurD and lowest binding free energy was subjected to 30-ns molecular dynamics simulation. Further, ADMET predictions showed the favorable pharmacokinetic profile of compounds H5 and H10.

Keywords

MurD enzyme Staphylococcus aureus HTVS MD simulation ADMET predictions 

Abbreviations

DAP

2,6-diaminopimelic acid

d-Glu

d-glutamic acid

MurC

UDP-N-acetylmuramate:l-Ala ligase

MRSA

methicillin-resistant Staphylococcus aureus

MIC

minimum inhibitory concentration

MBC

minimum bactericidal concentration

MurD

UDP-N-acetylmuramoyl-l-Ala:d-Glu ligase

MurE

UDP-N-acetylmuramoyl-l-Ala-d-Glu:meso-DAP ligase

MurF

UDPN-acetylmuramoyl-l-Ala-g-d-Glu-meso-DAP (or l-Lys):d-Ala-d-Ala ligase

MurNAc

N-acetylmuramic acid

UDP

uridine-5′-diphosphate

RMSD

root mean square deviation

UMA

uridine-5′-diphosphate-N-acetylmueamoyl-l-alanine

UMAG

UDP-N-acetylmuramoyl-l-alanine-d-glutamat

Notes

Funding information

We would like to thank the Science and Engineering Research Board (SERB), Government of India, for the financial support (No. EMR/2016/002981).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1330_MOESM1_ESM.docx (3.3 mb)
ESM 1 (DOCX 3382 kb)

References

  1. 1.
    World Health Organization. Antimicrobial resistance: global report on surveillance. (2014), http://apps.who.int/iris/bitstream/10665/112647/1/WHO_HSE_PED_AIP_2014.2_eng.pdf?ua=1. Accessed 20 Jan 2018
  2. 2.
    Nambiar S, Laessig K, Toerner J, Farley J, Cox E (2014) Antibacterial drug development: challenges, recent developments, and future considerations. Clin Pharmacol Ther 96:147–149PubMedGoogle Scholar
  3. 3.
    Duval X, Delahaye F, Alla F, Tattevin P, Obadia JF, Le Moing V, Doco-Lecompte T, Celard M, Poyart C, Strady C, Chirouze C, Bes M, Cambau E, Iung B, Selton-Suty C, Hoen B (2012) Temporal trends in infective endocarditis in the context of prophylaxis guideline modifications: three successive population-based surveys. J Am Coll Cardiol 59:1968–1976PubMedGoogle Scholar
  4. 4.
    Fedeli U, Schievano E, Buonfrate D, Pellizzer G, Spolaore P (2011) Increasing incidence and mortality of infective endocarditis: a population-based study through a record-linkage system. BMC Infect Dis 11:48PubMedPubMedCentralGoogle Scholar
  5. 5.
    Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207PubMedGoogle Scholar
  6. 6.
    Smith CA (2006) Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 362:640–655PubMedGoogle Scholar
  7. 7.
    Bouhss A, Dementin S, van Heijenoort J, Parquet C, Blanot D (2002) MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acylphosphate intermediates. Methods Enzymol 354:189–196PubMedGoogle Scholar
  8. 8.
    Eveland SS, Pompliano DL, Anderson MS (1997) Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-g-glutamate ligases: identification of a ligase superfamily. Biochem 36:6223–6229Google Scholar
  9. 9.
    Bouhss A, Dementin S, Parquet C, Mengin-Lecreulx D, Bertrand JA, Le Beller D, Dideberg O, van Heijenoort J, Blanot D (1999) Role of the ortholog and paralog amino acid invariants in the active site of the UDP-MurNAc-l-alanine:D-glutamate ligase (MurD). Biochem 38:12240–12247Google Scholar
  10. 10.
    van Heijenoort J (2001) Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep 18:503–519PubMedGoogle Scholar
  11. 11.
    Skedelj V, Tomasic T, Masic LP, Zega A (2011) ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 54:915–929PubMedGoogle Scholar
  12. 12.
    Walsh AW, Falk PJ, Thanassi J, Discotto L, Pucci MJ, Ho HT (1999) Comparison of the D-glutamate-adding enzymes from selected gram-positive and gram-negative bacteria. J Bacteriol 181:5395–5401PubMedPubMedCentralGoogle Scholar
  13. 13.
    El Zoeiby A, Sanschagrin F, Levesque RC (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47:1–12PubMedGoogle Scholar
  14. 14.
    El-Sherbeini M, Geissler WM, Pittman J, Yuan X, Wong KK, Pompliano DL (1998) Cloning and expression of Staphylococcus aureus and Streptococcus pyogenes murD genes encoding uridine diphosphate N-acetylmuramoyl-L-alanine:D-glutamate ligases. Gene 210:117–125PubMedGoogle Scholar
  15. 15.
    Bertrand JA, Auger G, Martin L, Fanchon E, Blanot D, Le Beller D, van Heijenoort J, Dideberg O (1999) Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J Mol Biol 289:579–590PubMedGoogle Scholar
  16. 16.
    Gordon E, Flouret B, Chantalat L, van Heijenoort J, Mengin-Lecreulx D, Dideberg O (2001) Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem 276:10999–11006PubMedGoogle Scholar
  17. 17.
    Yan Y, Munshi S, Leiting B, Anderson MS, Chrzas J, Chen Z (2000) Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution. J Mol Biol 304:435–445PubMedGoogle Scholar
  18. 18.
    Perdih A, Kotnik M, Hodoscek M, Solmajer T (2007) Targeted molecular dynamics simulation studies of binding and conformational changes in E. coli MurD. Proteins 68:243–254PubMedGoogle Scholar
  19. 19.
    Bouhss A, Mengin-Lecreulx D, Blanot D, van Heijenoort J, Parquet C (1997) Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochem 36:11556–11563Google Scholar
  20. 20.
    Barreteau H, Sosic I, Turk S, Humljan J, Tomasic T, Zidar N, Herve M, Boniface A, Peterlin-Masic L, Kikelj D, Mengin-Lecreulx D, Gobec S, Blanot D (2012) MurD enzymes from different bacteria: evaluation of inhibitors. Biochem Pharmacol 84:625–632PubMedGoogle Scholar
  21. 21.
    Gegnas LD, Waddell ST, Chabin RM, Reddy S, Wong KK (1998) Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg Med Chem Lett 8:1643–1648PubMedGoogle Scholar
  22. 22.
    Gobec S, Urleb U, Auger G, Blanot D (2001) Synthesis and biochemical evaluation of some novel N-acyl phosphono- and phosphinoalanine derivatives as potential inhibitors of the D-glutamic acid-adding enzyme. Die Pharmazie 56:295–297PubMedGoogle Scholar
  23. 23.
    Strancar K, Blanot D, Gobec S (2006) Design, synthesis and structure–activity relationships of new phosphinate inhibitors of MurD. Bioorg Med Chem Lett 16:343–348PubMedGoogle Scholar
  24. 24.
    Auger G, van Heijenoort J, Blanot D (1995) Synthesis of N-Acetylmuramic acid derivatives as potential inhibitors of the D-glutamic acid-adding enzyme. J Prakt Chem 337:351–357Google Scholar
  25. 25.
    Kotnik M, Humljan J, Contreras-Martel C, Oblak M, Kristan K, Hervé M, Blanot D, Urleb U, Gobec S, Dessen A, Solmajer T (2007) Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J Mol Biol 370:107–115PubMedGoogle Scholar
  26. 26.
    Humljan J, Kotnik M, Contreras-Martel C, Blanot D, Urleb U, Dessen A, Solmajer T, Gobec S (2008) Novel naphthalene-N-sulfonyl-D-glutamic acid derivatives as inhibitors of MurD, a key peptidoglycan biosynthesis enzyme. J Med Chem 51:7486–7494PubMedGoogle Scholar
  27. 27.
    Pratviel-Sosa F, Acher F, Trigalo F, Blanot D, Azerad R, van Heijenoort J (1994) Effect of various analogues of D-glutamic acid on the D-glutamate-adding enzyme from Escherichia coli. FEMS Microbiol Lett 115:223–228PubMedGoogle Scholar
  28. 28.
    Perdih A, Bren U, Solmajer T (2009) Binding free energy calculations of N-sulphonyl-glutamic acid inhibitors of MurD ligase. Mol Model 15:983–996Google Scholar
  29. 29.
    Sova M, Kovac A, Turk S, Hrast M, Blanot D, Gobec S (2009) Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem 37:217–222PubMedGoogle Scholar
  30. 30.
    Zidar N, Tomasic T, Sink R, Rupnik V, Kovac A, Turk S, Patin D, Blanot D, Contreras Martel C, Dessen A, Müller Premru M, Zega A, Gobec S, Peterlin Masic L, Kikelj D (2010) Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J Med Chem 53:6584–6594PubMedGoogle Scholar
  31. 31.
    Zidar N, Tomasic T, Sink R, Kovac A, Patin D, Blanot D, Contreras-Martel C, Dessen A, Premru MM, Zega A, Gobec S, Masic LP, Kikelj D (2011) New 5-benzylidenethiazolidin-4-one inhibitors of bacterial MurD ligase: design, synthesis, crystal structures, and biological evaluation. Eur J Med Chem 46:5512–5523PubMedGoogle Scholar
  32. 32.
    Sosic I, Barreteau H, Simcic M, Sink R, Cesar J, Zega A, Grdadolnik SG, Contreras-Martel C, Dessen A, Amoroso A, Joris B, Blanot D, Gobec S (2011) Second-generation sulfonamide inhibitors of D-glutamic acid-adding enzyme: activity optimisation with conformationally rigid analogues of D-glutamic acid. Eur J Med Chem 46:2880–2894PubMedGoogle Scholar
  33. 33.
    Perdih A, Hrast M, Barreteau H, Gobec S, Wolber G, Solmajer T (2014) Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF). Bioorg Med Chem 22:4124–4134PubMedGoogle Scholar
  34. 34.
    Perdih A, Kovac A, Wolber G, Blanot D, Gobec S, Solmajer T (2009) Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett 19:2668–2673PubMedGoogle Scholar
  35. 35.
    Turk S, Kovac A, Boniface A, Bostock JM, Chopra I, Blanot D, Gobec S (2009) Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorg Med Chem 17:1884–1889PubMedGoogle Scholar
  36. 36.
    Kotnik M, Anderluh PS, Prezelj A (2007) Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis. Curr Pharm Des 13:2283–2309PubMedGoogle Scholar
  37. 37.
    Tomasic T, Zidar N, Sink R, Kovac A, Blanot D, Contreras-Martel C, Dessen A, Muller-Premru M, Zega A, Gobec S, Kikelj D, Masic LP (2011) Structure-based design of a new series of D-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). J Med Chem 54:4600–4610PubMedGoogle Scholar
  38. 38.
    Tomasic T, Sink R, Zidar N, Fic A, Contreras-Martel C, Dessen A, Patin D, Blanot D, Muller-Premru M, Gobec S, Zega A, Kikelj D, Masic LP (2012) Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med Chem Lett 3:626–630PubMedPubMedCentralGoogle Scholar
  39. 39.
    Azam MA, Jupudi S, Saha N, Paul RK (2018) Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity. SAR QSAR Environ Res 30:1–20PubMedGoogle Scholar
  40. 40.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196PubMedGoogle Scholar
  41. 41.
    Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins: Struct Funct Bioinf 55:351–367Google Scholar
  42. 42.
    Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: a next generation energy model for high resolution protein structure modelling. Proteins 79:2794–2812PubMedPubMedCentralGoogle Scholar
  43. 43.
    Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G (2010) Probing the α-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des 75:348–359PubMedGoogle Scholar
  44. 44.
    Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296PubMedGoogle Scholar
  45. 45.
    Jorgensen WJ, Madura JD (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys 56:1381–1392Google Scholar
  46. 46.
    Lawrence CP, Skinner JL (2003) Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem Phys Lett 372:842–847Google Scholar
  47. 47.
    Essmann U, Perera L, Berkowit ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593Google Scholar
  48. 48.
    Martyna GJ, Klein ML, Tuckerman M (1992) Nose-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643Google Scholar
  49. 49.
    Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189Google Scholar
  50. 50.
    Auger G, Martin L, Bertrand J, Ferrari P, Fanchon E, Vaganay S, Petillot Y, van Heijenoort J, Blanot D, Dideberg O (1998) Large-scale preparation, purification, and crystallization of UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase from Escherichia coli. Prot Express Purif 13:23–29Google Scholar
  51. 51.
    Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97Google Scholar
  52. 52.
    Clinical and Laboratory Standard Institute (CLSI) (2007) Methods for dilution antibacterial susceptibility test for Bacteria that grow aerobically, 7th ed. Approved Standard (MA7-A7); Clinical and Laboratory Standard Institute: Wayne. 27:133Google Scholar
  53. 53.
    Tomasic T, Kovac A, Simcic M, Blanot D, Grdadolnik SG, Gobec S, Kikelj D, Peterlin Masic L (2011) Novel 2-thioxothiazolidin-4-one inhibitors of bacterial MurD ligase targeting D-Glu- and diphosphate-binding sites. Eur J Med Chem 46:3964–3975PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical ChemistryJSS College of PharmacyOotyIndia

Personalised recommendations