Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2191–2204 | Cite as

Probing non-covalent interactions of phosphine and arsine derivatives: an energy decomposition analysis using localized molecular orbitals

  • Bilal Ahmad ShiekhEmail author
  • Damanjit Kaur
  • Rajinder Kaur
Original Research
  • 52 Downloads

Abstract

Ab initio (MP2/aug-cc-pVTZ) and density functional theory (DFT) (B3PW91/aug-cc-pVTZ and B3LYP-D3/Def2-TZVPP) analyses have been carried out to characterize the bonding of phosphine and arsine derivatives i.e., M-RH2–HF (M = As or P, R = furan, pyridine, pyrrole, and thiophene) with hydrogen fluoride (HF). Two minima were found on the potential energy surface (PES) for each complex, one in which HF is forming directly an H-bond with pnicogen while the other one in which HF is interacting with the heterocyclic ring in addition to normal H-bond. The latter one is highly stable with MP2/CBS extrapolated binding energies ranging from − 10.67 kcal mol−1 to − 6.33 kcal mol−1. The interaction energies in these complexes follow the order P-PyrHF > P-ThioHF > P-FuHF > P-PyHF > As-PyrHF > As-ThioHF > As-FuHF > As-PyHF. NBO analysis demonstrated that \( {LP}_{As/P}\to {\sigma}_{H-F}^{\ast } \) orbital interaction plays a major role in stabilizing these complexes, and the largest charge is transferred in P-type complexes compared with their As-type analogs. The LMO-EDA pointed out that all the partitioning terms are stabilizing in nature with a dominant role carried out by exchange energy while as the repulsion energy is the only term being destabilizing in nature. Many body interaction analysis in ternary complexes M-RH2–(HF)2, in which the other interaction site of heterocyclic rings (N, O, and S) were used for second H-bonding with another HF molecule, revealed that the second H-bond is destabilizing the pnicogen H-bond and showed negative synergetic effects.

Keywords

Non-covalent interactions Phosphine and arsine derivatives PES LMO-EDA Cooperation energy 

Notes

Acknowledgments

The authors are thankful to Anuraj Kaur for providing the help needed to complete the work.

Funding information

This work was financially supported by UGC, Govt. of India under UGC-BSR scheme as SRF (Senior Research Fellow) vide notification number, NO.F.25-1/2013-14(BSR)/5-27/2007(BSR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11224_2019_1328_MOESM1_ESM.doc (73.9 mb)
ESM 1 (DOC 75717 kb)

References

  1. 1.
    Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Hunter CA, Sanders JKM (1990) The nature of π-π interactions. J Am Chem Soc 112:5525–5534Google Scholar
  3. 3.
    Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250Google Scholar
  4. 4.
    Hobza P, Ller-Dethlefs KM (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, CambridgeGoogle Scholar
  5. 5.
    Desiraju GR (1995) Supramolecular synthons in crystal engineering: a new organic synthesis. Angew Chem Int Ed 34:2311–2327Google Scholar
  6. 6.
    Hobza P, Zahradník R (1980) Weak intermolecular interactions in chemistry and biology. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  7. 7.
    Hobza P, Zaradnik R (1998) Intermolecular complexes: the role of van der Waals systems in physical chemsitry and the biodisciplines. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Ye RP, Yang JX, Zhang X, Zhang L, Yao YG (2016) Diverse Zn(II) MOFs assembled from v-shaped asymmetric multicarboxylate and N-donor ligands. J Mol Struct 1106:192–199Google Scholar
  9. 9.
    Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35:565PubMedGoogle Scholar
  10. 10.
    Bauza A, Ramis R, Frontera A (2014) Combined theoretical and Cambridge Structural Database study of π-hole pnicogen bonding complexes between electron rich molecules and both nitro compounds and inorganic bromides (YO2Br, Y = N, P, and As). J Phys Chem A 118:2827–2834PubMedGoogle Scholar
  11. 11.
    Bauza A, Quinonero D, Deya PM, Frontera A (2012) Pnicogen–π complexes: theoretical study and biological implications. Phys Chem Chem Phys 14:14061–14066PubMedGoogle Scholar
  12. 12.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189PubMedGoogle Scholar
  13. 13.
    Del Bene JE, Alkorta I, Elguero J (2015) Exploring the (H2C═PH2)+:N-base potential surfaces: complexes stabilized by pnicogen, hydrogen, and tetrel bonds. J Phys Chem A 119:11701–−11710PubMedGoogle Scholar
  14. 14.
    Chandra S, Bhattacharya A (2016) Attochemistry of ionized halogen, chalcogen, pnicogen, and tetrel noncovalent bonded clusters. J Phys Chem A 120:10057–10071PubMedGoogle Scholar
  15. 15.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2. J Phys Chem A 117:4981–4987PubMedGoogle Scholar
  16. 16.
    Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–953PubMedGoogle Scholar
  17. 17.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X ═ H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724–13731PubMedGoogle Scholar
  18. 18.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2012) Structures, binding energies, and spin–spin coupling constants of geometric isomers of pnicogen homodimers (PHFX)2, X = F, Cl, CN, CH3, NC. J Phys Chem A 116:3056–3060PubMedGoogle Scholar
  19. 19.
    Del Bene JE, Alkorta I, Elguero J (2013) Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C═PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2. J Phys Chem A 117:6893–6903PubMedGoogle Scholar
  20. 20.
    Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386–3392PubMedGoogle Scholar
  21. 21.
    Pecina A, Lepšík M, Hnyk D, Hobza P, Fanfrlík J (2015) Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square-antiprismatic heteroboranes. J Phys Chem A 119:1388–1395PubMedGoogle Scholar
  22. 22.
    Del Bene JE, Alkorta I, Elguero J (2015) P···N pnicogen bonds in cationic complexes of F4P+ and F3HP+ with nitrogen bases. J Phys Chem A 119:3125–3133PubMedGoogle Scholar
  23. 23.
    Del Bene JE, Alkorta I, Elguero J, Sánchez-Sanz G (2017) Lone-pair hole on P: P···N pnicogen bonds assisted by halogen bonds. J Phys Chem A 121:1362–1370PubMedGoogle Scholar
  24. 24.
    Eskandari K, Mahmoodabadi M (2013) Pnicogen bonds: a theoretical study based on the Laplacian of electron density. J Phys Chem A 117:13018–13024PubMedGoogle Scholar
  25. 25.
    Guan L, Mo Y (2014) Electron transfer in pnicogen bonds. J Phys Chem A 118:8911–8921PubMedGoogle Scholar
  26. 26.
    Alkorta I, Sanchez-Sanz G, Elguero J (2012) Influence of hydrogen bonds on the P···P pnicogen bond. J Chem Theory Comput 8:2320–2327PubMedGoogle Scholar
  27. 27.
    Del Bene JE (2012) Interplay of F–H...F hydrogen bonds and P...N pnicogen bonds. J Phys Chem A 116:9205–9213PubMedGoogle Scholar
  28. 28.
    Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE (2014) Pnicogen bonds between X═PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 118:1527–1537PubMedGoogle Scholar
  29. 29.
    Setiawan D, Kraka E, Cremer D (2015) Strength of the pnicogen bond in complexes involving group Va elements N, P, and As. J Phys Chem A 119:1642–1656PubMedGoogle Scholar
  30. 30.
    Hansen AS, Du L, Kjaergaard HG (2014) Positively charged phosphorus as a hydrogen bond acceptor. J Phys Chem Lett 5:4225–4231PubMedGoogle Scholar
  31. 31.
    Li Q, Zhu H, Zhuo H, Yang X, Li W, Cheng J (2014) Complexes between hypohalous acids and phosphine derivatives. Pnicogen bond versus halogen bond versus hydrogen bond. Spectrochim Acta Part A 132:271–277Google Scholar
  32. 32.
    Alkorta I, Elguero J, Del Bene JE (2014) Characterizing traditional and chlorine-shared halogen bonds in complexes of phosphine derivatives with ClF and Cl2. J Phys Chem A 118:4222–4231PubMedGoogle Scholar
  33. 33.
    Alikhani E, Fuster F, Madebene B, Grabowski SJ (2014) Topological reaction sites – very strong chalcogen bonds. Phys Chem Chem Phys 16:2430–2442PubMedGoogle Scholar
  34. 34.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker. Chem Eur J 17:6034–6038PubMedGoogle Scholar
  35. 35.
    Scheiner S (2011) Weak H-bonds. Comparisons of CH⋯O to NH⋯O in proteins and PH⋯N to direct P⋯N interactions. Phys Chem Chem Phys 13:13860–13872PubMedGoogle Scholar
  36. 36.
    Scheiner S, Adhikari U (2011) Abilities of different electron donors (D) to engage in a P···D noncovalent interaction. J Phys Chem A 115:11101–11110PubMedGoogle Scholar
  37. 37.
    Scheiner S (2011) Effects of substituents upon the P···N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202–11209PubMedGoogle Scholar
  38. 38.
    Scheiner S (2011) A new noncovalent force: comparison of P···N interaction with hydrogen and halogen bonds. J Chem Phys 134:094315PubMedGoogle Scholar
  39. 39.
    Scheiner S (2011) Effects of multiple substitution upon the P⋯N noncovalent interaction. Chem Phys 387:79–84Google Scholar
  40. 40.
    Espallargas GM, Brammer L, Allan DR, Pulham CR, Robertson N, Warren JE (2008) Noncovalent interactions under extreme conditions: high-pressure and low-temperature diffraction studies of the isostructural metal−organic networks (4-Chloropyridinium)2[CoX4] (X = Cl, Br). J Am Chem Soc 130:9058–9071Google Scholar
  41. 41.
    Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102–014115PubMedGoogle Scholar
  42. 42.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023Google Scholar
  43. 43.
    Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys 103:4572–4585Google Scholar
  44. 44.
    Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371Google Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KItao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendel A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo C, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  46. 46.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539Google Scholar
  47. 47.
    Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem 10:1–19Google Scholar
  48. 48.
    Bartlett RJ, Silver DM (1975) Many-body perturbation theory applied to electron pair correlation energies. I. Closed-shell first-row diatomic hydrides. J Chem Phys 62:3258–3268Google Scholar
  49. 49.
    Boys SB, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566Google Scholar
  50. 50.
    Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646Google Scholar
  51. 51.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem Phys Lett 286:243–252Google Scholar
  52. 52.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363Google Scholar
  53. 53.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506PubMedPubMedCentralGoogle Scholar
  54. 54.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632PubMedPubMedCentralGoogle Scholar
  55. 55.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38PubMedPubMedCentralGoogle Scholar
  56. 56.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686Google Scholar
  57. 57.
    Becke AD, Edgecombe KE (1990) A simple measure of Electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403Google Scholar
  58. 58.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592PubMedPubMedCentralGoogle Scholar
  59. 59.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2004) NBO 5.G. University of Wisconsin, Madison, WIGoogle Scholar
  60. 60.
    Rincón L, Almeida R, Aldea DG (2005) Many-body energy decomposition analysis of cooperativity in hydrogen fluoride clusters. Int J Quantum Chem 102:443–453Google Scholar
  61. 61.
    Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11:299–300Google Scholar
  62. 62.
    Hankins D, Moskowitz JW, Stillinger FH (1970). J Chem Phys 53:4544–4554Google Scholar
  63. 63.
    Keith TA (2012) AIMAll (Version 12.08.21); TK Gristmill Software, Overland Parks KS, USA (aim.tkgristmill.com)
  64. 64.
    Sundberg MR, Uggla R, Viñas C, Teixidor F, Paavola S, Kivekäs R (2007) Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-closo-dodecaboranes with short P⋯P distances. Inorg Chem Commun 10:713–716Google Scholar
  65. 65.
    Stone AJ (2017) Natural bond orbitals and the nature of the hydrogen bond. J Phys Chem A 121:1531–1534PubMedGoogle Scholar
  66. 66.
    Belpassi L, Infante I, Tarantelli F, Visscher L (2008) The chemical bond between au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130:1048–1060PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bilal Ahmad Shiekh
    • 1
    Email author
  • Damanjit Kaur
    • 1
  • Rajinder Kaur
    • 1
  1. 1.Department of Chemistry, UGC Sponsored Centre of Advanced, z Studies-IGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations