Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1929–1939 | Cite as

Synthesis, 1D and 2D NMR spectral assignments, and stereochemical studies of some 4,8,9,10-tetraaryl-1,3-diazaadamantan-6-one oximes

  • G. Vengatesh
  • M. SundaravadiveluEmail author
Original Research
  • 62 Downloads

Abstract

A series of 4,8,9,10-tetraaryl-1,3-diazaadamantan-6-one oximes (4a-4e) have been synthesized. 1H and 13C NMR spectra of these oximes were recorded. Chemical shifts have been assigned and the stereochemistry of the compounds was established using 1D and 2D NMR spectral data. A detailed spectral investigation was carried out for one of the representative compounds (4a) with COSY, NOESY, HMQC, HMBC, DEPT-135, and N NMR spectral data. The NMR result clearly indicated the twin chair conformation of the two piperidine rings. The NMR results proved the axial orientation of two aryl groups (C4 and C10) in one piperidine ring and equatorial orientation of two aryl groups (C8 and C9) in another piperidine ring. The effect of allylic (A1,3) interaction between the oxime hydroxyl group and H-5e has been observed. Long-range coupling between H-10e and H-2 which are in ‘W’ arrangement is noted.

Keywords

2D NMR 15N NMR Oxime Tricyclic compound Conformation W arrangement 

Notes

Acknowledgments

The authors gratefully acknowledge DST- FIST NMR facility of Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University for recording NMR spectra.

Funding information

The authors thank the UGC, New Delhi, for Major Research Project (grant No. 42-358/2013 (SR)) and UGC-Special Assistance Programme (SAP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1326_MOESM1_ESM.pdf (9.9 mb)
ESM 1 (PDF 10092 kb)

References

  1. 1.
    Vijayakumar V, Sundaravadivelu M, Perumal S et al (2001) H and C NMR study of 4,8,9,10-tetraaryl-1,3-diazatricyclo [3.3.1.1] decan-6-ones. Magn Reson Chem 39:645–647.  https://doi.org/10.1002/mrc.885 CrossRefGoogle Scholar
  2. 2.
    Karaman N, Sicak Y, Taskin-Tok T et al (2016) New piperidine-hydrazone derivatives: synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors. Eur J Med Chem 124:270–283.  https://doi.org/10.1016/j.ejmech.2016.08.037 CrossRefGoogle Scholar
  3. 3.
    Tan H, Song X, Yan H et al (2017) Synthesis, NMR analysis and X-ray crystal structure of 3-(2-naphthoyl)-6,12-diphenyl-3,9-diazatetraasterane. J Mol Struct 1129:23–31.  https://doi.org/10.1016/j.molstruc.2016.09.055 CrossRefGoogle Scholar
  4. 4.
    Sethukumar A, Surendar Anand P, Udhaya Kumar C et al (2017) Synthesis, stereochemical and biological studies of some N-cyclohexylcarbamoyl -2,6-diarylpiperidin-4-ones. J Mol Struct 1130:352–362.  https://doi.org/10.1016/j.molstruc.2016.10.035 CrossRefGoogle Scholar
  5. 5.
    Mohanraj V, Ponnuswamy S (2018) Synthesis, characterization, stereochemistry, biological investigation and DNA binding studies on N-acyl-t-3-ethyl-r-2,c-6-bis(4- methoxyphenyl)piperidin-4-ones. J Mol Struct 1171:420–428.  https://doi.org/10.1016/j.molstruc.2018.05.102 CrossRefGoogle Scholar
  6. 6.
    Vijayakumar V, Sundaravadivelu M, Perumal S, Hewlins MJE (2000) NMR study of the stereochemistry of 2,4,6,8-tetraaryl-3,7-diazabicyclo [3.3.1] nonan-9-ones. Magn Reson Chem 38:883–885.  https://doi.org/10.1002/1097-458X(200010)38:10<883::AID-MRC708>3.0.CO;2-V CrossRefGoogle Scholar
  7. 7.
    Vijayakumar V, Sundaravadivelu M, Perumal S (2001) NMR and IR spectroscopic study of mono-, bi- and tricyclic piperidone systems. Magn Reson Chem 39:101–104.  https://doi.org/10.1002/1097-458X(200102)39:2<101::AID-MRC797>3.0.CO;2-F CrossRefGoogle Scholar
  8. 8.
    Jimenez-Cruz F, Rios-Olivares H, Rubio-Arroyo M (2002) H and C NMR investigation of 2-eq,9-ax-diaryl-azaadamantan-4-ones. J Mol Struct 604:261–268.  https://doi.org/10.1016/S0022-2860(01)00662-7 CrossRefGoogle Scholar
  9. 9.
    Parthiban P, Ramachandran R, Aridoss G, Kabilan S (2008) H and C NMR spectral assignments of some novel 2,4,6,8-tetraaryl-3,7-diazabicyclo [3.3.1] nonan-9-one derivatives. Magn Reson Chem 46:780–785.  https://doi.org/10.1002/mrc.2243 CrossRefGoogle Scholar
  10. 10.
    Park DH, Jeong YT, Parthiban P (2011) A complete 1D and 2D NMR studies of variously substituted 3-azabicyclo [3.3.1] nonan-9-ones. J Mol Struct 1005:31–44.  https://doi.org/10.1016/j.molstruc.2011.08.006 CrossRefGoogle Scholar
  11. 11.
    Kamaraj A, Rajkumar R, Krishnasamy K (2015) Synthesis, spectral, structural and biological studies of N-cyclohexyl-2-(2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazinecarbothioamide derivatives. J Mol Struct 1088:179–189.  https://doi.org/10.1016/j.molstruc.2015.01.044 CrossRefGoogle Scholar
  12. 12.
    Akila A, Ponnuswamy S, Shreevidhyaa Suresh V, Usha G (2015) Synthesis, characterization and stereochemistry of N-acyl-r-2,c-4-bis(4-methoxyphenyl)-3-azabicyclo[3.3.1]nonanes. J Mol Struct 1093:113–118.  https://doi.org/10.1016/j.molstruc.2015.03.052 CrossRefGoogle Scholar
  13. 13.
    Ponnuswamy S, Pushpalatha S, Akila A et al (2016) Synthesis, characterization, stereochemistry and antibacterial activity of N-acyl-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonanes. J Mol Struct 1125:453–463.  https://doi.org/10.1016/j.molstruc.2016.07.014 CrossRefGoogle Scholar
  14. 14.
    Choong IC, Ellman JA (1999) Synthesis of alkoxylamines by alkoxide amination with 3,3‘-Di-tert-butyloxaziridine. J Org Chem 64:6528–6529.  https://doi.org/10.1021/jo990490h CrossRefGoogle Scholar
  15. 15.
    Sayin U, Yuksel H, Ozmen A, Birey M (2010) CW-EPR study of 2,2,4,4-tetramethyl-3-pentanone oxime single crystals. Radiat Phys Chem 2010(79):1220–1224.  https://doi.org/10.1016/j.radphyschem.2010.07.051 CrossRefGoogle Scholar
  16. 16.
    De Sousa DP, Schefer RR, Brocksom U, Brocksom TJ (2006) Synthesis and antidepressant evaluation of three para-benzoquinone mono-oximes and their oxy derivatives. Molecules 11:148–155.  https://doi.org/10.3390/11020148 CrossRefGoogle Scholar
  17. 17.
    Abd-Ellah HS, Abdel-Aziz M, Shoman ME et al (2016) Novel 1,3,4-oxadiazole/oxime hybrids: synthesis, docking studies and investigation of anti-inflammatory, ulcerogenic liability and analgesic activities. Bioorg Chem 69:48–63.  https://doi.org/10.1016/j.bioorg.2016.09.005 CrossRefGoogle Scholar
  18. 18.
    Li Q, Zhang J, Chen LZ et al (2018) New pentadienone oxime ester derivatives: synthesis and anti-inflammatory activity. J Enzyme Inhib Med Chem 33:130–138.  https://doi.org/10.1080/14756366.2017.1396455 CrossRefGoogle Scholar
  19. 19.
    Song H, Song HX, Shia DQ (2014) Synthesis and fungicidal activity of strobilurin analogues containing 1,2,4-triazole oxime ether moiety. J Heterocyclic Chem 51:1603–1606.  https://doi.org/10.1002/jhet.1708 CrossRefGoogle Scholar
  20. 20.
    Park HJ, Lee K, Park SJ et al (2005) Identification of antitumor activity of pyrazole oxime ethers. Bioorg Med Chem Lett 15:3307–3312.  https://doi.org/10.1016/j.bmcl.2005.03.082 CrossRefGoogle Scholar
  21. 21.
    Vagvolgyi M, Martins A, Kulmany A et al (2018) Nitrogen-containing ecdysteroid derivatives vs. multi-drug resistance in cancer: preparation and antitumor activity of oximes, oxime ethers and a lactam. Eur J Med Chem 114:130–139.  https://doi.org/10.1016/j.ejmech.2017.12.032 Google Scholar
  22. 22.
    Winkler DA, Liepa AJ, Anderson-McKay JE, Hart NK (1989) A molecular graphics study of factors influencing herbicidal activity of oximes of 3-acyl-tetrahydro-2H-pyran-2,4-diones. Pestic Sci 27:45–63.  https://doi.org/10.1002/ps.2780270106 CrossRefGoogle Scholar
  23. 23.
    Babu MSS, Reddy KH, Krishna PG (2007) Synthesis, characterization, DNA interaction and cleavage activity of new mixed ligand copper (II) complexes with heterocyclic bases. Polyhedron 26:572–580.  https://doi.org/10.1016/j.poly.2006.08.026 CrossRefGoogle Scholar
  24. 24.
    Saglam N, Colak A, Serbest K et al (2002) Oxidative cleavage of DNA by homo- and heteronuclear Cu (II)-Mn (II) complexes of an oxime-type ligand. Biometals 15:357–365.  https://doi.org/10.1023/A:102022872 CrossRefGoogle Scholar
  25. 25.
    Nelson AT, Kolar MJ, Chu Q et al (2017) Stereochemistry of endogenous palmitic acid ester of 9-hydroxystearic acid and relevance of absolute configuration to regulation. J Am Chem Soc 139:4943–4947.  https://doi.org/10.1021/jacs.7b01269 CrossRefGoogle Scholar
  26. 26.
    Ottaviani JI, Momma TY, Heiss C et al (2011) The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic Biol Med 50:237–244.  https://doi.org/10.1016/j.freeradbiomed.2010.11.005 CrossRefGoogle Scholar
  27. 27.
    Parthiban P, Kabilan S, Ramkumar V, Jeong YT (2010) Stereocontrolled facile synthesis and antimicrobial activity of oximes and oxime ethers of diversely substituted bispidines. Bioorg Med Chem Lett 20:6452–6458.  https://doi.org/10.1016/j.bmcl.2010.09.079 CrossRefGoogle Scholar
  28. 28.
    Sivasubramanian S, Sundaravadivelu M, Wilson DA (1987) H NMR spectra of cis-2,6-diphenylpiperidines and cis-2,6-diphenyl-4-piperidones. Magn Reson Chem 25:869–871.  https://doi.org/10.1002/mrc.1260251008 CrossRefGoogle Scholar
  29. 29.
    Parthiban P, Rathika P, Park KS, Jeong YT (2010) Synthesis, complete NMR spectral assignments, and antifungal screening of new 2,4-diaryl-3-azabicyclo [3.3.1] nonan-9-one oxime derivatives. Monatsh Chem 141:79–93.  https://doi.org/10.1007/s00706-009-0221-8 CrossRefGoogle Scholar
  30. 30.
    Natarajan S, Sudha Priya V, Vijayakumar V et al (2009) 4,8,9,10-Tetrakis(4-fluorophenyl)-1,3- diazatricyclo[3.3.1.1]decan-6-one. Acta Cryst E 65:o1530.  https://doi.org/10.1107/S160053680902090X CrossRefGoogle Scholar
  31. 31.
    Parthiban P, Rathika P, Ramkumar V et al (2010) Stereospecific synthesis of oximes and oxime ethers of 3-azabicycles: a SAR study towards antimicrobial agents. Bioorg Med Chem Lett 20:1642–1647.  https://doi.org/10.1016/j.bmcl.2010.01.048 CrossRefGoogle Scholar
  32. 32.
    Dai H, Li G, Chen J et al (2016) Synthesis and biological activities of novel 1,3,4-thiadiazole-containing pyrazole oxime derivatives. Bioorg Med Chem Lett 26:3818–3821.  https://doi.org/10.1016/j.bmcl.2016.04.094 CrossRefGoogle Scholar
  33. 33.
    Lambert JB, Netzel DA, Sun HN, Lilianstorm KK (1976) Carbon-13 chemical shifts of the pentamethylene heterocycles. J Am Chem Soc 98:3778–3783.  https://doi.org/10.1021/ja00429a007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryThe Gandhigram Rural Institute-Deemed to be UniversityGandhigramIndia

Personalised recommendations