Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1635–1646 | Cite as

Complexes of damirone A/C, batzelline A/D, makaluvamine O and makaluvone with guanidinium and magnesium cations: a theoretical study

  • Saber Mohammadi Chalanchi
  • Ali EbrahimiEmail author
  • Alireza Nowroozi
Original Research
  • 38 Downloads

Abstract

Among physiologically active compounds isolated from marine organisms, the pyrroloquinoline alkaloids (PQAs) family consisting of damirone A/C, batzelline A/D, makaluvamine O and makaluvone exhibit numerous biological activities derived from the inimitable highly-fused structures. Their structural and electronic properties were investigated through intramolecular interactions, electron affinities (EA), reduction potentials (E°) and complexation of compounds with magnesium and guanidinium cations (ionic and hydrogen bond interactions) using quantum mechanical calculations in the gas phase and solution. For both series of complexes, the most and least stable ones correspond to damirone A and batzelline D, respectively. The energy data, geometrical parameters, and the minima of electrostatic potentials (Vmin) are in good correlation with the results of population analyses. The localized molecular orbital energy decomposition analyses (LMO-EDA) demonstrate that the electrostatic interaction is the most important stabilizing component. The EA values are positive in the gas phase and solution, and are evaluated with the increase in the dielectric constant of solvent. Increase in the EA values and decrease in the E° values are observed after complexation with guanidinium and magnesium cations. Those changes are higher for electron-rich compounds compared to electron-deficient ones, containing halogen substituents.

Keywords

Electron affinity LMO-EDA analysis Mulliken atomic spin density NBO analysis Pyrroloquinoline alkaloid Reduction potential 

Notes

Acknowledgments

We are grateful to the University of Sistan and Baluchestan for financial support and the Computational Quantum Chemistry Laboratory for computational facilities.

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1325_MOESM1_ESM.docx (155 kb)
ESM 1 (DOCX 155 kb)

References

  1. 1.
    Heffner JE, Raber JC, Moe Jr OA, Wigal CT (1998). J Chem Educ 75:365CrossRefGoogle Scholar
  2. 2.
    Zhang M, Vervoort L, Moalin M, Mommers A, Douny C, den Hartog GJ, Haenen GR (2018). Free Radic Biol Med 124:31–39CrossRefGoogle Scholar
  3. 3.
    Y Zhu Y, Wu M, Gao N, Chu W, Zhao L, Wang Q (2019). Chem Eng J 357:75–83CrossRefGoogle Scholar
  4. 4.
    Bolton JL, Dunlap TL, Dietz BM (2018). Food Chem Toxicol 120:700–707CrossRefGoogle Scholar
  5. 5.
    Reynolds CA (1990). J Am Chem Soc 112:7545–7551CrossRefGoogle Scholar
  6. 6.
    Ferguson-Miller S, Babcock GT (1996). Chem Rev 96:2889–2908CrossRefGoogle Scholar
  7. 7.
    Fukuzumi S, Guldi D M (2001) Electron transfer in chemistry, V. Balzani (Ed.), Wiley-VCH, Weinheim 2: 270–337Google Scholar
  8. 8.
    Lewis FD (2001) Electron transfer in chemistry, V. Balzani (Ed.), Wiley-VCH, Weinheim 3: 105–175Google Scholar
  9. 9.
    Fukuzumi S (2003). Org Biomol Chem 1:609–620CrossRefGoogle Scholar
  10. 10.
    Turek AK, Hardee DJ, Ullman AM, Nocera DG, Jacobsen EN (2016). Angew Chem Int Ed 55:539–544CrossRefGoogle Scholar
  11. 11.
    Yuasa J, Yamada S, Fukuzumi S (2007). Angew Chem Int Ed 46:3553–3555CrossRefGoogle Scholar
  12. 12.
    Macıas-Ruvalcaba NA, González I, Aguilar-Martınez M (2004). J Electrochem Soc 151:E110–E118CrossRefGoogle Scholar
  13. 13.
    Fukuzumi S, Kitaguchi H, Suenobu OS (2002) Activation of electron transfer reduction of p-benzoquinone derivatives by intermolecular regioselective hydrogen bond formation. Chem Commun (17):1984–1985Google Scholar
  14. 14.
    Yuasa J, Yamada S, Fukuzumi S (2008). J Am Chem Soc 130:5808–5820CrossRefGoogle Scholar
  15. 15.
    Okamoto K, Ohkubo K, Kadish KM, Fukuzumi S (2004). J Phys Chem A 108:10405–10413CrossRefGoogle Scholar
  16. 16.
    Greaves MD, Niemz A, Rotello VM (1999). J Am Chem Soc 121:266–267CrossRefGoogle Scholar
  17. 17.
    Gómez M, Gómez-Castro CZ, Padilla-Martı́nez II, Martı́nez-Martı́nez FJ, González FJ (2004). J Electroanal Chem 567:269–276CrossRefGoogle Scholar
  18. 18.
    Namazian M, Coote ML (2007). J Phys Chem A 111:7227–7232CrossRefGoogle Scholar
  19. 19.
    Alvarez M, Bros MA, Gras G, Ajana W, Joule JA (1999). Eur J Org Chem 1999:1173–1183CrossRefGoogle Scholar
  20. 20.
    Backenköhler J, Reck B, Plaumann M, Spiteller P (2018). Eur J Org Chem 2018:2806–2816CrossRefGoogle Scholar
  21. 21.
    Chen QB, Xin XL, Yang Y, Lee SS, Aisa HA (2014). J Nat Prod 77:807–812CrossRefGoogle Scholar
  22. 22.
    Radisky DC, Radisky ES, Barrows LR, Copp BR, Kramer RA, Ireland CM (1993). J Am Chem Soc 115:1632–1638CrossRefGoogle Scholar
  23. 23.
    Carney JR, Scheuer PJ, Kelly-Borges M (1993). Tetrahedron 49:8483–8486CrossRefGoogle Scholar
  24. 24.
    Lohmann JS, Wagner S, von Nussbaum M, Pulte A, Steglich W, Spiteller P (2018). Chem Eur J 24:8609–8614CrossRefGoogle Scholar
  25. 25.
    El-Demerdash A, Atanasov AG, Bishayee A, Abdel-Mogib M, Hooper JN, Al-Mourabit A (2018). Nutrients 10:33CrossRefGoogle Scholar
  26. 26.
    Miyanaga A, Janso JE, McDonald L, He M, Liu H, Barbieri L, Feng X (2011). J Am Chem Soc 133:13311–13313CrossRefGoogle Scholar
  27. 27.
    Jordan PA, Moore BS (2016). Cell Chem Biol 23:1504–1514CrossRefGoogle Scholar
  28. 28.
    Oshiyama T, Satoh T, Okano K, Tokuyama H (2012). Tetrahedron 68:9376–9383CrossRefGoogle Scholar
  29. 29.
    Backenköhler J, Spindler S, Spiteller P (2017). ChemistrySelect 2:2589–2592CrossRefGoogle Scholar
  30. 30.
    Blanco F, Kelly B, Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J, Rozas I (2013). J Phys Chem B 117:11608–11616CrossRefGoogle Scholar
  31. 31.
    Buchdunger E, Zimmermann J, Mett H, Meyer T, Mueller M, Druker BJ, Lydon NB (1996). Cancer Res 56:100–104Google Scholar
  32. 32.
    Wexselblatt E, Esko JD, Tor Y (2014). J Organomet Chem 79:6766–6774CrossRefGoogle Scholar
  33. 33.
    Werner J, Wernersson E, Ekholm V, Ottosson N, Öhrwall G, Heyda J, BjÖrneholm O (2014). J Phys Chem B 118:7119–7127CrossRefGoogle Scholar
  34. 34.
    Yuasa J, Suenobu T, Fukuzumi S (2006). Chemphyschem 7:942–954CrossRefGoogle Scholar
  35. 35.
    Orsetti S, Laskov C, Haderlein SB (2013). Environ Sci Technol 47:14161–14168CrossRefGoogle Scholar
  36. 36.
    Casini A, Finazzi-Agrò A, Sabatini S, Tortorella S, Scipione L (1999). Arch Biochem Biophys 368:385–393CrossRefGoogle Scholar
  37. 37.
    Park H, Oyama M (2002) Electroanalysis 14:1269–1274Google Scholar
  38. 38.
    Witwicki M, Jezierska J (2011). J Phys Chem B 115:3172–3184CrossRefGoogle Scholar
  39. 39.
    Nicolás I, Vilchis M, Aragón N, Miranda R, Hojer G, Castro M (2003). Int J Quantum Chem 93:411–421CrossRefGoogle Scholar
  40. 40.
    Cesaretti A, Carlotti B, Gentili PL, Clementi C, Germani R, Elisei F (2014). J Phys Chem B 118:8601–8613CrossRefGoogle Scholar
  41. 41.
    Deshayes S, Xian W, Schmidt NW, Kordbacheh S, Lieng J, Wang J, Wong GC (2017). Bioconjug Chem 28:793–804CrossRefGoogle Scholar
  42. 42.
    Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926CrossRefGoogle Scholar
  43. 43.
    Su P, Li H (2009). J Chem Phys 131:014102CrossRefGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., WallingfordGoogle Scholar
  45. 45.
    Improta R, Barone V (2004). J Comput Chem 25:1333–1341CrossRefGoogle Scholar
  46. 46.
    Moosavi-Tekyeh Z, Taherian F, Tayyari SF (2016). J Mol Struct 1111:185–192CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi FD (1970). Mol Phys 19:553–566CrossRefGoogle Scholar
  48. 48.
    Su P, Jiang Z, Chen Z, Wu W (2014). J Phys Chem A 118:2531–2542CrossRefGoogle Scholar
  49. 49.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993). J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  50. 50.
    Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323CrossRefGoogle Scholar
  51. 51.
    Biegler-Konig JSF, Bayles D (2001). J Comput Chem 22:545–559CrossRefGoogle Scholar
  52. 52.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  53. 53.
    Foster JP, Weinhold F (1980). J Am Chem Soc 102:7211CrossRefGoogle Scholar
  54. 54.
    Cai ZL, Sendt K, Reimers JR (2002). J Chem Phys 117:5543–5549CrossRefGoogle Scholar
  55. 55.
    Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999–3094CrossRefGoogle Scholar
  56. 56.
    Rozas I, Alkorta I, Elguero J (2000). J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  57. 57.
    Zhu XQ, Wang CH (2010). J Organomet Chem 75:5037–5047CrossRefGoogle Scholar
  58. 58.
    Bu Y, Liu Y, Deng C (1998). J Mol Struct THEOCHEM 422:219–228CrossRefGoogle Scholar
  59. 59.
    Chen M, Moir D, Benoit FM, Kubwabo C (1998). J Chromatogr A 825:37–44CrossRefGoogle Scholar
  60. 60.
    Nepal B, Scheiner S (2016). J Organomet Chem 81:4316–4324CrossRefGoogle Scholar
  61. 61.
    Bím D, Rulíšek L, Srnec M (2015). J Phys Chem Lett 7:7–13CrossRefGoogle Scholar
  62. 62.
    Fu Y, Liu L, Wang YM, Li JN, Yu TQ, Guo QX (2006). J Phys Chem A 110:5874–5886CrossRefGoogle Scholar
  63. 63.
    Cheng GJ, Song LJ, Yang YF, Zhang X, Wiest O, Wu YD (2013). ChemPlusChem 78:943–951CrossRefGoogle Scholar
  64. 64.
    Baik MH, Friesner RA (2002). J Phys Chem A 106:7407–7412CrossRefGoogle Scholar
  65. 65.
    Jacobs N, Lang S, Panisch R, Wittstock G, Groth U, Nasiri HR (2015). RSC Adv 5:58561–58565CrossRefGoogle Scholar
  66. 66.
    Raymond KS, Grafton AK, Wheeler RA (1997). J Phys Chem B 101:623–631CrossRefGoogle Scholar
  67. 67.
    Hesabi N, Ebrahimi A, Nowroozi A (2017). J Mol Graph Model 77:86–93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Saber Mohammadi Chalanchi
    • 1
  • Ali Ebrahimi
    • 1
    Email author
  • Alireza Nowroozi
    • 1
  1. 1.Department of Chemistry, Computational Quantum Chemistry LaboratoryUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations