Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1831–1842 | Cite as

DFT study on the regio- and stereoselectivity of the organocatalytic aza-Diels-Alder reaction of crotonaldehyde and cyclic 1-aza-1,3-butadiene

  • Mina HaghdadiEmail author
  • Atieh Abaszadeh
  • Zoleykhah Falahati
Original Research
  • 43 Downloads

Abstract

The mechanism of 1,4-, 1,2-, and 3,4-cyclization reactions of cyclic 1-azadiene 1 with an organocatalyst 4 has been studied theoretically using DFT method. The reactions proceed in a stepwise fashion, with zwitterionic intermediates. The most favorable cyclization reaction takes place along the C–C pathway of the 1,4-cyclization reaction, under a combination of kinetic and thermodynamic control. The reaction is characterized by the nucleophilic attack of 4 (C5) to the electrophilic center of 1 (C1), leading to the formation of cycloadduct 6, which correctly explains the source of the regioselectivity.

Keywords

Stepwise Amino-catalysis Regio- and stereoselectivity Density functional theory Cyclization reaction 

Notes

Acknowledgments

The authors wish to acknowledge Dr. Louise S. Price, University College London, UK, for reading the manuscript and providing valuable suggestions.

Disclaimer

We guarantee that this manuscript is original, that has been written by the stated authors and has not been published elsewhere; the manuscript has not been submitted to more than one journal for simultaneous consideration.

We wish to confirm that it has not been published previously (partly or in full). This study is not split up into several parts. We confirm that no data have been fabricated or manipulated. No data, text, or theories by others are presented as if they were the authors own. This manuscript contains no libelous or other unlawful statements and does not contain any materials that violate any personal or proprietary rights of any other person or entity.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1323_MOESM1_ESM.rar (10.8 mb)
ESM 1 (RAR 11093 kb)
11224_2019_1323_MOESM2_ESM.docx (19 kb)
ESM 2 (DOCX 18 kb)

References

  1. 1.
    Long J, Ding K (2001) Engineering catalysts for enantioselective addition of diethylzinc to aldehydes with racemic amino alcohols: nonlinear effects in asymmetric deactivation of racemic catalysts. Angew Chem 113:544–547.  https://doi.org/10.1002/1521-3773(20010202) CrossRefGoogle Scholar
  2. 2.
    Dalko PI, Moisan L (2001) Enantioselective organocatalysis. Angew Chem 113:3726–3748.  https://doi.org/10.1002/1521-3773(20011015) CrossRefGoogle Scholar
  3. 3.
    List B, Yang JW (2006). The organic approach to asymmetric catalysis 313:1584–1586.  https://doi.org/10.1126/science.1131945 Google Scholar
  4. 4.
    Seayad J, List B (2005) Asymmetric organocatalysis. Org Biomol Chem 3:719–724.  https://doi.org/10.1039/B415217B CrossRefGoogle Scholar
  5. 5.
    Berkessel A, GrRger H (2004) Asymmetric organocatalysis: from biomimetic concepts to applications in asymmetric synthesis Wiley-VCH WeinheimGoogle Scholar
  6. 6.
    Cozzi F (2006) Immobilization of organic catalysts: when why and how. Adv Synth Catal 348:1367–1390.  https://doi.org/10.1002/adsc.200606096 CrossRefGoogle Scholar
  7. 7.
    Houk KN, List B (2004) Asymmetric organocatalysis. Acc Chem Res 37:487–621.  https://doi.org/10.1021/ar040216w CrossRefGoogle Scholar
  8. 8.
    Kocovsky P, Malkov AV (2006) Organocatalysis in organic synthesis. Tetrahedron 62:255–502.  https://doi.org/10.1039/b516289k CrossRefGoogle Scholar
  9. 9.
    List B (2007) Introduction: organocatalysis. Chem Rev 107:5413–5883.  https://doi.org/10.1021/cr078412e CrossRefGoogle Scholar
  10. 10.
    Yang JW, Hechavarria Fonseca MT, List B (2005) Catalytic asymmetric reductive Michael cyclization. J Am Chem Soc 127:15036–15037.  https://doi.org/10.1055/s-2005-921650 CrossRefGoogle Scholar
  11. 11.
    Huang Y, Walji AM, Larsen CH, MacMillan DWC (2005) Enantioselective organo-cascade catalysis. J Am Chem Soc 127:15051–15053.  https://doi.org/10.1021/ja055545d CrossRefGoogle Scholar
  12. 12.
    Ramachary DB, Reddy YV (2012) Dienamine catalysis: an emerging technology in organic synthesis. Eur J Org Chem;865–887 doi: https://doi.org/10.1002/ejoc.201101157
  13. 13.
    Arceo E, Melchiorre P (2012) Extending the aminocatalytic HOMO-raising activation strategy: where is the limit? Angew Chem Int Ed 51:5290–5292.  https://doi.org/10.1002/anie.201109036 CrossRefGoogle Scholar
  14. 14.
    Jansen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA (2012) The diarylprolinol silyl ether system: a general organocatalyst. Acc Chem Res 45:248–264.  https://doi.org/10.1021/ar200149w CrossRefGoogle Scholar
  15. 15.
    Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA (2005) Enantioselective organocatalyzed α-sulfenylation of aldehydes. Angew Chem Int Ed 44:794–797.  https://doi.org/10.1002/anie.200462101 CrossRefGoogle Scholar
  16. 16.
    Xu L-W, Li L, Shi Z-H (2010) Asymmetric synthesis with silicon-based bulky amino organocatalysts. Adv Synth Catal 352:243–279.  https://doi.org/10.1021/ja111544b CrossRefGoogle Scholar
  17. 17.
    Mielgo A, Palomo C (2008) α,α-DiarylIprolinol ether: new tools for functionalization of carbonyl compounds. Chem Asian J 3:922–948.  https://doi.org/10.1002/asia.200700417 CrossRefGoogle Scholar
  18. 18.
    Gu J, Ma Ch LQ, Du W, Chen Y (2014) β,γ-Regioselective inverse-electron-demand aza-Diels–Alder reactions with α,β-unsaturated aldehydes via dienamine catalysis. Org Lett1 6:3986–3989.  https://doi.org/10.1021/ol501814p CrossRefGoogle Scholar
  19. 19.
    Sustmann R (1974) Orbital energy control of cycloaddition reactivity pure. Appl Chem 40:569–593.  https://doi.org/10.1351/pac197440040569 CrossRefGoogle Scholar
  20. 20.
    Houk KN (1975) The frontier molecular orbital theory of cycloaddition reactions. Acc Chem Res 8:361–369.  https://doi.org/10.1021/ar50095a001 CrossRefGoogle Scholar
  21. 21.
    Han B, Li JL, Ma C, Zhang SJ, Chen Y-C (2008) Organocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-sulfonyl-1-aza-1,3-butadienes and aldehydes. Angew Chem Int Ed 47:9971–9974.  https://doi.org/10.1002/anie.200804183 CrossRefGoogle Scholar
  22. 22.
    Han B, He ZQ, Li JL, Li R, Jiang K, Liu TY, Chen YC (2009) Organocatalytic regio- and stereoselective inverse-electron-demand aza-Diels-Alder reaction of alpha,beta-unsaturated aldehydes and N-tosyl-1-aza-1,3-butadienes. Angew Chem Int Ed 48:5474–5477.  https://doi.org/10.1002/anie.200902216 CrossRefGoogle Scholar
  23. 23.
    Li JL, Zhou SL, Han B, Wu L, Chen YC (2010) Aminocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-Ts-1-aza-1,3-butadienes based on coumarin cores. Chem Commun 46:2665–2667.  https://doi.org/10.1039/b925424b CrossRefGoogle Scholar
  24. 24.
    Xiong XF, Zhang H, Peng J, Chen YC (2011) Direct asymmetric Michael addition of cyclic N-sulfonylimines to α,β-unsaturated aldehydes. Chem Eur J 17:2358–2360.  https://doi.org/10.1002/chem.201002592 CrossRefGoogle Scholar
  25. 25.
    Kravina AG, Mahatthananchai J, Bode JW (2012) Enantioselective, NHC-catalyzed annulations of trisubstituted enals and cyclic N-sulfonylimines via α,β-unsaturated acyl azoliums. Angew Chem Int Ed 5:9433–9436.  https://doi.org/10.1002/anie.201204145 CrossRefGoogle Scholar
  26. 26.
    Feng X, Zhou Z, Ma C, Yin X, Li R, Dong L, Chen Y-C (2013) Trienamines derived from interrupted cyclic 2,5-dienones: remote δ,ε-C=C bond activation for asymmetric inverse-electron-demand aza-Diels-Alder reaction. Angew Chem Int Ed Engl. 52(52):14173–14176.  https://doi.org/10.1002/anie.201307460 CrossRefGoogle Scholar
  27. 27.
    Ma C, Gu J, Teng B, Zhou Q-Q, Li R, Chen Y-C (2013) 1-Azadienes as regio- and chemoselective dienophiles in aminocatalytic asymmetric Diels-Alder reaction. Org Lett 15:6206–6209.  https://doi.org/10.1021/ol4030474 CrossRefGoogle Scholar
  28. 28.
    Yu L, Cheng Y, Qi F, Li R, Li P (2017) Organocatalytic regioselectivite, diastereoselective, and enantioselective annulation of cyclic 1-aadiene with γ-nitro ketone via 3,4-cyclization. Org Chem Frontiers 4:1336–1340.  https://doi.org/10.1039/C6QO00832A CrossRefGoogle Scholar
  29. 29.
    Wang KK, Jin T, Huang X, Ouyang Q, Du W, Chen YC (2016) α-Regioselective asymmetric [3 + 2] annulations of Morita–Baylis–Hillman carbonates with cyclic 1-azadienes and mechanism elucidation. Org Lett 18:872–675.  https://doi.org/10.1021/acs.orglett.6b00189 CrossRefGoogle Scholar
  30. 30.
    Wu Y, Liu Y, Yang W, Liu H, Zhou L, Sun Z, Guo H (2016) Chiral phosphine-catalyzed enantioselective [3+2] annulation of Morita–Baylis–Hillman carbonates with cyclic 1-azadienes: synthesis of functionalized cyclopentenes. Adv Synth Catal 358:3517–3521.  https://doi.org/10.1002/adsc.201600607 CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Start-mann RE, Burant JC, Daprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochtersk JI, Petersson GA, Ayala Y, Ui QC, Morokuma K, Malick DK, Rubuck AD, Raghavachari K, Foresman JB, Cioslowski J, Oritz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Comperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challa-combe M, Gill MW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09 revision A.02. Gaussian, Inc, Wallingford CTGoogle Scholar
  32. 32.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  33. 33.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Zhao Y, Truhlar GD (2004) Hybrid Meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918.  https://doi.org/10.1021/jp048147q CrossRefGoogle Scholar
  35. 35.
    Hehre WJ, Radom L, PVR S, Pople JA (1986) Ab initio Molecular Orbital Theory. Wiley, New YorkGoogle Scholar
  36. 36.
    Tomasi J, Persico M (1994) Molecular interactions in solution an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094.  https://doi.org/10.1021/cr00031a013 CrossRefGoogle Scholar
  37. 37.
    Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model. J Chem Phys 107:3032–3041.  https://doi.org/10.1063/1.474659 CrossRefGoogle Scholar
  38. 38.
    Domingo LR (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428.  https://doi.org/10.1039/C4RA04280H CrossRefGoogle Scholar
  39. 39.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746.  https://doi.org/10.1063/1.449486 CrossRefGoogle Scholar
  40. 40.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926.  https://doi.org/10.1021/cr00088a005 CrossRefGoogle Scholar
  41. 41.
    Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924.  https://doi.org/10.1021/ja983494x CrossRefGoogle Scholar
  42. 42.
    Parr RG, Pearson RG (1983) Absolute hardness-companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–75162.  https://doi.org/10.1021/ja00364a005 CrossRefGoogle Scholar
  43. 43.
    Domingo LR, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions a theoretical study. J Org Chem 73:4615–4624.  https://doi.org/10.1021/jo800572a CrossRefGoogle Scholar
  44. 44.
    Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175.  https://doi.org/10.1039/c1ob05856h CrossRefGoogle Scholar
  45. 45.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138.  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  46. 46.
    Domingo LR, Pérez P, Saez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494.  https://doi.org/10.1039/C2RA22886F CrossRefGoogle Scholar
  47. 47.
    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523.  https://doi.org/10.1021/j100377a021 CrossRefGoogle Scholar
  48. 48.
    Groselj U, Seebach D, Badline DM, Scheeizer WB, Beck AK, Krossing L, Klose P, Hayashi Y, Uchimaru T (2009) Structures of the reactive intermediates in organocatalysis with diarylprolinol ethers. Hel Chem Acta 92:1225–1259.  https://doi.org/10.1002/hlca.200900179 CrossRefGoogle Scholar
  49. 49.
    Schmid MB, Zeitler K, Gschwind RM (2011) Distinct conformational preferences of prolinol and prolinol ether enamines in solution revealed by NMR. Chem Sci 2:1793–1803.  https://doi.org/10.1039/C1SC00274K CrossRefGoogle Scholar
  50. 50.
    Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728.  https://doi.org/10.1146/annurev.pc.46.100195.003413 CrossRefGoogle Scholar
  51. 51.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154.  https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1 CrossRefGoogle Scholar
  52. 52.
    Ess DH, Jones GO, Houk KN (2006) Conceptual, qualitative, and quantitative theories of 1,3-dipolar and Diels–Alder cycloadditions used in synthesis. Adv Synth Catal 348:2337–2361.  https://doi.org/10.1002/adsc.200600431 CrossRefGoogle Scholar
  53. 53.
    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423.  https://doi.org/10.1016/S0040-4020(02)00410-6 CrossRefGoogle Scholar
  54. 54.
    Jaramillo P, Domingo LR, Chamorro E, Pérez PJ (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct 865:68–72.  https://doi.org/10.1016/j.theochem.2008.06.022 CrossRefGoogle Scholar
  55. 55.
    Chemouri H, Mekellecche SM (2012) Density functional theory study of the regio- and stereoselectivity of diels–alder reactions of 5-aryl-2-pyrones. Int J Quantum Chem 112:2294–2300.  https://doi.org/10.1002/qua.23232 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mina Haghdadi
    • 1
    Email author
  • Atieh Abaszadeh
    • 1
  • Zoleykhah Falahati
    • 1
  1. 1.Department of ChemistryIslamic Azad UniversityBabolIran

Personalised recommendations