Structural Chemistry

, Volume 30, Issue 5, pp 1831–1842 | Cite as

DFT study on the regio- and stereoselectivity of the organocatalytic aza-Diels-Alder reaction of crotonaldehyde and cyclic 1-aza-1,3-butadiene

  • Mina HaghdadiEmail author
  • Atieh Abaszadeh
  • Zoleykhah Falahati
Original Research


The mechanism of 1,4-, 1,2-, and 3,4-cyclization reactions of cyclic 1-azadiene 1 with an organocatalyst 4 has been studied theoretically using DFT method. The reactions proceed in a stepwise fashion, with zwitterionic intermediates. The most favorable cyclization reaction takes place along the C–C pathway of the 1,4-cyclization reaction, under a combination of kinetic and thermodynamic control. The reaction is characterized by the nucleophilic attack of 4 (C5) to the electrophilic center of 1 (C1), leading to the formation of cycloadduct 6, which correctly explains the source of the regioselectivity.


Stepwise Amino-catalysis Regio- and stereoselectivity Density functional theory Cyclization reaction 



The authors wish to acknowledge Dr. Louise S. Price, University College London, UK, for reading the manuscript and providing valuable suggestions.


We guarantee that this manuscript is original, that has been written by the stated authors and has not been published elsewhere; the manuscript has not been submitted to more than one journal for simultaneous consideration.

We wish to confirm that it has not been published previously (partly or in full). This study is not split up into several parts. We confirm that no data have been fabricated or manipulated. No data, text, or theories by others are presented as if they were the authors own. This manuscript contains no libelous or other unlawful statements and does not contain any materials that violate any personal or proprietary rights of any other person or entity.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1323_MOESM1_ESM.rar (10.8 mb)
ESM 1 (RAR 11093 kb)
11224_2019_1323_MOESM2_ESM.docx (19 kb)
ESM 2 (DOCX 18 kb)


  1. 1.
    Long J, Ding K (2001) Engineering catalysts for enantioselective addition of diethylzinc to aldehydes with racemic amino alcohols: nonlinear effects in asymmetric deactivation of racemic catalysts. Angew Chem 113:544–547. CrossRefGoogle Scholar
  2. 2.
    Dalko PI, Moisan L (2001) Enantioselective organocatalysis. Angew Chem 113:3726–3748. CrossRefGoogle Scholar
  3. 3.
    List B, Yang JW (2006). The organic approach to asymmetric catalysis 313:1584–1586. Google Scholar
  4. 4.
    Seayad J, List B (2005) Asymmetric organocatalysis. Org Biomol Chem 3:719–724. CrossRefGoogle Scholar
  5. 5.
    Berkessel A, GrRger H (2004) Asymmetric organocatalysis: from biomimetic concepts to applications in asymmetric synthesis Wiley-VCH WeinheimGoogle Scholar
  6. 6.
    Cozzi F (2006) Immobilization of organic catalysts: when why and how. Adv Synth Catal 348:1367–1390. CrossRefGoogle Scholar
  7. 7.
    Houk KN, List B (2004) Asymmetric organocatalysis. Acc Chem Res 37:487–621. CrossRefGoogle Scholar
  8. 8.
    Kocovsky P, Malkov AV (2006) Organocatalysis in organic synthesis. Tetrahedron 62:255–502. CrossRefGoogle Scholar
  9. 9.
    List B (2007) Introduction: organocatalysis. Chem Rev 107:5413–5883. CrossRefGoogle Scholar
  10. 10.
    Yang JW, Hechavarria Fonseca MT, List B (2005) Catalytic asymmetric reductive Michael cyclization. J Am Chem Soc 127:15036–15037. CrossRefGoogle Scholar
  11. 11.
    Huang Y, Walji AM, Larsen CH, MacMillan DWC (2005) Enantioselective organo-cascade catalysis. J Am Chem Soc 127:15051–15053. CrossRefGoogle Scholar
  12. 12.
    Ramachary DB, Reddy YV (2012) Dienamine catalysis: an emerging technology in organic synthesis. Eur J Org Chem;865–887 doi:
  13. 13.
    Arceo E, Melchiorre P (2012) Extending the aminocatalytic HOMO-raising activation strategy: where is the limit? Angew Chem Int Ed 51:5290–5292. CrossRefGoogle Scholar
  14. 14.
    Jansen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA (2012) The diarylprolinol silyl ether system: a general organocatalyst. Acc Chem Res 45:248–264. CrossRefGoogle Scholar
  15. 15.
    Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA (2005) Enantioselective organocatalyzed α-sulfenylation of aldehydes. Angew Chem Int Ed 44:794–797. CrossRefGoogle Scholar
  16. 16.
    Xu L-W, Li L, Shi Z-H (2010) Asymmetric synthesis with silicon-based bulky amino organocatalysts. Adv Synth Catal 352:243–279. CrossRefGoogle Scholar
  17. 17.
    Mielgo A, Palomo C (2008) α,α-DiarylIprolinol ether: new tools for functionalization of carbonyl compounds. Chem Asian J 3:922–948. CrossRefGoogle Scholar
  18. 18.
    Gu J, Ma Ch LQ, Du W, Chen Y (2014) β,γ-Regioselective inverse-electron-demand aza-Diels–Alder reactions with α,β-unsaturated aldehydes via dienamine catalysis. Org Lett1 6:3986–3989. CrossRefGoogle Scholar
  19. 19.
    Sustmann R (1974) Orbital energy control of cycloaddition reactivity pure. Appl Chem 40:569–593. CrossRefGoogle Scholar
  20. 20.
    Houk KN (1975) The frontier molecular orbital theory of cycloaddition reactions. Acc Chem Res 8:361–369. CrossRefGoogle Scholar
  21. 21.
    Han B, Li JL, Ma C, Zhang SJ, Chen Y-C (2008) Organocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-sulfonyl-1-aza-1,3-butadienes and aldehydes. Angew Chem Int Ed 47:9971–9974. CrossRefGoogle Scholar
  22. 22.
    Han B, He ZQ, Li JL, Li R, Jiang K, Liu TY, Chen YC (2009) Organocatalytic regio- and stereoselective inverse-electron-demand aza-Diels-Alder reaction of alpha,beta-unsaturated aldehydes and N-tosyl-1-aza-1,3-butadienes. Angew Chem Int Ed 48:5474–5477. CrossRefGoogle Scholar
  23. 23.
    Li JL, Zhou SL, Han B, Wu L, Chen YC (2010) Aminocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-Ts-1-aza-1,3-butadienes based on coumarin cores. Chem Commun 46:2665–2667. CrossRefGoogle Scholar
  24. 24.
    Xiong XF, Zhang H, Peng J, Chen YC (2011) Direct asymmetric Michael addition of cyclic N-sulfonylimines to α,β-unsaturated aldehydes. Chem Eur J 17:2358–2360. CrossRefGoogle Scholar
  25. 25.
    Kravina AG, Mahatthananchai J, Bode JW (2012) Enantioselective, NHC-catalyzed annulations of trisubstituted enals and cyclic N-sulfonylimines via α,β-unsaturated acyl azoliums. Angew Chem Int Ed 5:9433–9436. CrossRefGoogle Scholar
  26. 26.
    Feng X, Zhou Z, Ma C, Yin X, Li R, Dong L, Chen Y-C (2013) Trienamines derived from interrupted cyclic 2,5-dienones: remote δ,ε-C=C bond activation for asymmetric inverse-electron-demand aza-Diels-Alder reaction. Angew Chem Int Ed Engl. 52(52):14173–14176. CrossRefGoogle Scholar
  27. 27.
    Ma C, Gu J, Teng B, Zhou Q-Q, Li R, Chen Y-C (2013) 1-Azadienes as regio- and chemoselective dienophiles in aminocatalytic asymmetric Diels-Alder reaction. Org Lett 15:6206–6209. CrossRefGoogle Scholar
  28. 28.
    Yu L, Cheng Y, Qi F, Li R, Li P (2017) Organocatalytic regioselectivite, diastereoselective, and enantioselective annulation of cyclic 1-aadiene with γ-nitro ketone via 3,4-cyclization. Org Chem Frontiers 4:1336–1340. CrossRefGoogle Scholar
  29. 29.
    Wang KK, Jin T, Huang X, Ouyang Q, Du W, Chen YC (2016) α-Regioselective asymmetric [3 + 2] annulations of Morita–Baylis–Hillman carbonates with cyclic 1-azadienes and mechanism elucidation. Org Lett 18:872–675. CrossRefGoogle Scholar
  30. 30.
    Wu Y, Liu Y, Yang W, Liu H, Zhou L, Sun Z, Guo H (2016) Chiral phosphine-catalyzed enantioselective [3+2] annulation of Morita–Baylis–Hillman carbonates with cyclic 1-azadienes: synthesis of functionalized cyclopentenes. Adv Synth Catal 358:3517–3521. CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Start-mann RE, Burant JC, Daprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochtersk JI, Petersson GA, Ayala Y, Ui QC, Morokuma K, Malick DK, Rubuck AD, Raghavachari K, Foresman JB, Cioslowski J, Oritz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Comperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challa-combe M, Gill MW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09 revision A.02. Gaussian, Inc, Wallingford CTGoogle Scholar
  32. 32.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  33. 33.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Zhao Y, Truhlar GD (2004) Hybrid Meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918. CrossRefGoogle Scholar
  35. 35.
    Hehre WJ, Radom L, PVR S, Pople JA (1986) Ab initio Molecular Orbital Theory. Wiley, New YorkGoogle Scholar
  36. 36.
    Tomasi J, Persico M (1994) Molecular interactions in solution an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094. CrossRefGoogle Scholar
  37. 37.
    Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model. J Chem Phys 107:3032–3041. CrossRefGoogle Scholar
  38. 38.
    Domingo LR (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428. CrossRefGoogle Scholar
  39. 39.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. CrossRefGoogle Scholar
  40. 40.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. CrossRefGoogle Scholar
  41. 41.
    Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. CrossRefGoogle Scholar
  42. 42.
    Parr RG, Pearson RG (1983) Absolute hardness-companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–75162. CrossRefGoogle Scholar
  43. 43.
    Domingo LR, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions a theoretical study. J Org Chem 73:4615–4624. CrossRefGoogle Scholar
  44. 44.
    Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175. CrossRefGoogle Scholar
  45. 45.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138. CrossRefGoogle Scholar
  46. 46.
    Domingo LR, Pérez P, Saez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494. CrossRefGoogle Scholar
  47. 47.
    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523. CrossRefGoogle Scholar
  48. 48.
    Groselj U, Seebach D, Badline DM, Scheeizer WB, Beck AK, Krossing L, Klose P, Hayashi Y, Uchimaru T (2009) Structures of the reactive intermediates in organocatalysis with diarylprolinol ethers. Hel Chem Acta 92:1225–1259. CrossRefGoogle Scholar
  49. 49.
    Schmid MB, Zeitler K, Gschwind RM (2011) Distinct conformational preferences of prolinol and prolinol ether enamines in solution revealed by NMR. Chem Sci 2:1793–1803. CrossRefGoogle Scholar
  50. 50.
    Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728. CrossRefGoogle Scholar
  51. 51.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154. CrossRefGoogle Scholar
  52. 52.
    Ess DH, Jones GO, Houk KN (2006) Conceptual, qualitative, and quantitative theories of 1,3-dipolar and Diels–Alder cycloadditions used in synthesis. Adv Synth Catal 348:2337–2361. CrossRefGoogle Scholar
  53. 53.
    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423. CrossRefGoogle Scholar
  54. 54.
    Jaramillo P, Domingo LR, Chamorro E, Pérez PJ (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct 865:68–72. CrossRefGoogle Scholar
  55. 55.
    Chemouri H, Mekellecche SM (2012) Density functional theory study of the regio- and stereoselectivity of diels–alder reactions of 5-aryl-2-pyrones. Int J Quantum Chem 112:2294–2300. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mina Haghdadi
    • 1
    Email author
  • Atieh Abaszadeh
    • 1
  • Zoleykhah Falahati
    • 1
  1. 1.Department of ChemistryIslamic Azad UniversityBabolIran

Personalised recommendations