Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1859–1871 | Cite as

DFT investigation of homotrinuclear and heterotrinuclear [M3(Phz)2], [MM′2(Phz)2], [M3(CO)2(Phz)2], [MM′2(CO)2(Phz)2] sandwich complexes (M = Ti, Cr, Fe and Ni; M′ = V and Mn, Phz = C12H8N2): predicted models and electronic structures

  • Bachir ZouchouneEmail author
  • Meriem Merzoug
  • Narimene Bensalem
Original Research
  • 24 Downloads

Abstract

The results described in this work report a DFT/BP86 (using the TZ2P basis) study concerning the molecular and electronic structures of homotrinuclear and heterotrinuclear substituted and unsubstituted complexes. It is about the interaction between a trimetallic M3 moiety flanked between two phenazine (Phz) ligand which is a 14-π electron donor ligand. Each of the six-membered rings of each phenazine tends to establish M-L bonding with various hapticies from η2 to η6 according to the electron need and the nature of the metal. The most stable [Ti3(Phz)2] and [Cr3(Phz)2] complexes have a comparable closed-shell electronic configuration of 18-/18-/18-MVE with the same η666 coordination mode. However, the [Cr3(Phz)2] and [Ni3(Phz)2] complexes correspond to 17-/18-/17 and 14-/14-/14-MVE electronic configurations, respectively. The unsubstituted heterotrinuclear [Cr(V)2(Phz)2] and [Cr(Mn)2(Phz)2] complexes are the most stable in the models wherein the highest electronegative atoms are adjacent, contrary to the [Ti(V)2(Phz)2] species which are favored in the case where the identical Ti atoms are separated by the vanadium one. All unsubstituted complexes display M-M bonding, conversely to the carbonyl-substituted complexes which prefer the M-CO bonding rather than the M-M ones. The triple, double, and single M-M bonding present in the proposed models are identified by the bond distances, Wiberg index, and MO plots according to the valence electron count of the M3 moiety.

Keywords

Coordination modes Metal-ligand interactions Natural bond analysis Spin contamination 

Notes

Authors’ contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

The authors received financial support from the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

11224_2019_1322_MOESM1_ESM.docx (38 kb)
ESM 1 Table S1-S7: Selected calculated parameters for [M3(Phz)2], [M3(CO)2(Phz)2], [MM′2(Phz)2] and [MM′2(CO)2(Phz)2] (M = Ti, Cr, Fe and Ni; M′ = V and Mn) complexes. The bond distances are given in (Å), the HOMO-LUMO gaps are given in (eV) and the relative energies between isomers are given in (kcal/mol). (DOCX 37 kb)

References

  1. 1.
    Weskamp T, Böhm VPW, Herrmann WA (2000) N-heterocyclic carbenes: state of the art in transition-metal-complex synthesis. J Organomet Chem 12:42Google Scholar
  2. 2.
    Wanzlick HW, Schonherr H-J (1968) Electronic structure and reactivity of metal carbenes. Angew Chem 801:54 Angew Chem Int Engl Ed 7:141Google Scholar
  3. 3.
    Luger P, Ruban G (1971) Die Kristallstruktur eines Quecksilbersalz–Carben-Komplexes. Acta Crystallogr Sect B 27:2276CrossRefGoogle Scholar
  4. 4.
    Kealy TJ, Paulson PL (1951) A new type of organo-iron compound. Nature 168:1039CrossRefGoogle Scholar
  5. 5.
    Miller SA, Tebboth JA, Tremaine JF (1952) Dicyclopentadienyliron. J Chem Soc 0:632CrossRefGoogle Scholar
  6. 6.
    Meredith MB, Crisp JA, Brady ED, Hanusa TP, Yee GT, Brook NR, Kucera BE, Young Jr VGA (2006). Organometallics 25:4945CrossRefGoogle Scholar
  7. 7.
    Meredith MB, Crisp JA, Brady ED, Hanusa TP, Yee GT, Pink M, Brennessel WW, Young Jr VG (2008). Organometallics 27:5464CrossRefGoogle Scholar
  8. 8.
    Crisp JA, Meier RM, Overby JS, Hanusa TP, Rheingold AL, Brennessel WW (2010). Organometallics 29:2322CrossRefGoogle Scholar
  9. 9.
    Crisp J A, Meredith M B, Hanusa T P, G. Wang, Brennessel W W, Yee G T (2005) Inorg Chem 44: 172Google Scholar
  10. 10.
    Guo S, Alog BI, Hauptmann R, Nowotny M, Schneider JJ (2009). J Organomet Chem 694:1027CrossRefGoogle Scholar
  11. 11.
    Chekkal F, Zendaoui SM, Zouchoune B, Saillard JY (2013) Structural and spin diversity of M(indenyl)2transition-metal complexes: a DFT investigation. New J Chem 37:2293CrossRefGoogle Scholar
  12. 12.
    Zendaoui SM, Zouchoune B (2016) Coordination chemistry of mixed M(benzene)(cyclopendadienyl) sandwich complexes: electronic properties and bonding analysis. New J Chem 40:2554CrossRefGoogle Scholar
  13. 13.
    A Saiad, B Zouchouneab. (2015) Electronic structure and bonding analysis of transition metal sandwich and half-sandwich complexes of the triphenylene ligand. Can J Chem 93:1096Google Scholar
  14. 14.
    Korichi H, Zouchoune F, Zendaoui SM, Zouchoune B, Saillard JY (2010) The coordination chemistry of azulene: a comprehensive DFT Investigation. Organometallics: American Chemical Society 29:1693CrossRefGoogle Scholar
  15. 15.
    Werner H (1977) New varieties of sandwich complexes. Angew Chem Int Engl Ed 16:1CrossRefGoogle Scholar
  16. 16.
    Nishihara H, Nalwa HS (1997) Handbook of organic conductive molecules and polymer conductive polymers: synthesis and electrical properties. Wiley 2:799–832Google Scholar
  17. 17.
    Siebert W (1985) 2, 3-Dihydro-1, 3-diborole-metal complexes with activated C-H bonds: building blocks for multilayered sandwich compounds. Angew Chem Int Engl Ed 24:943CrossRefGoogle Scholar
  18. 18.
    Grimes RN (1992) Boron-carbon ring ligands in organometallic synthesis. Chem Rev 92:251CrossRefGoogle Scholar
  19. 19.
    Grimes R N, Kabalka G.W (Ed.) (1994) Current topics in the chemistry of boron. R Soc Chem London 269Google Scholar
  20. 20.
    Murahashi T, Otani T, Mochizuki E, Kai Y, Kurosawa H (1998) Remarkably wide range of bond distance adjustment of d9−d9 Pd−Pd interactions to change in coordination environment. J Am Chem Soc 120:4536CrossRefGoogle Scholar
  21. 21.
    Murahashi T, Kurosawa H (2002) Organopalladium complexes containing palladium-palladium bonds. Coord Chem Rev 231:207CrossRefGoogle Scholar
  22. 22.
    Gorlov M, Fischer A, Kloo L (2004) Reaction between palladium(II) and gallium(III) halogenides in arenes: influence of halogen nature on the formation of binuclear palladium(I) clusters. J Organomet Chem 689:489CrossRefGoogle Scholar
  23. 23.
    Katz TJ, Acton N, McGinnis J (1972) Selected examples of other dinuclear M–M Sandwich compounds. J Am Chem Soc 94:6205CrossRefGoogle Scholar
  24. 24.
    Jonas K, Rȕsseler W, Krȕger C, Raabe E (1986) Selected examples of other dinuclear M–M sandwichcompounds Angew. Chem 98:905Google Scholar
  25. 25.
    kuchta MC, Cloke FGN, Hitchcock PB (1998) Selected examples of other dinuclear M–M sandwich compounds. Organometallics 17:1934CrossRefGoogle Scholar
  26. 26.
    Murahashi T, Mochizuk E, Kai Y, Kurosawa H (1999) Multinuclear palladium sandwich compounds of π-conjugated polyene. J Am Chem Soc 121:10660CrossRefGoogle Scholar
  27. 27.
    Murahashi T, Higuchi Y, Katoh T, Kurosawa H (2002) Multinuclear palladium sandwich compounds of π-conjugated polyene. J Am Chem Soc 124:14288CrossRefGoogle Scholar
  28. 28.
    Tatsumi Y, Shirato K, Murahashi T, Ogoshi S, Kurosawa H (2006) For multinuclear palladium sandwich compounds of p-conjugated polyene. Angew Chem 118:5931 Angew Chem Int Engl Ed 45:5799CrossRefGoogle Scholar
  29. 29.
    Pan FX, Li LJ, Wang YJ, Guo JC, Zhai HJ, Xu L, Sun ZM (2015) An all-metal aromatic sandwich complex [Sb3Au3Sb3]3−. J Am Chem Soc 137:10954CrossRefGoogle Scholar
  30. 30.
    Burdett JK, Canadell E (1985) Extended polymetallic sandwich compounds. Organometallic 4:805–815CrossRefGoogle Scholar
  31. 31.
    Stowasser B, Hafner K (1986) synthesis of a dicyclopenta [a, e] pentalene by [6+2]-cycloaddition of 1, 3-di-tert-butyl-5-vinylidenecyclopentadiene and consecutive 8π-electrocyclic reaction. AngewChem Int Ed Engl 25:466–468CrossRefGoogle Scholar
  32. 32.
    Cao H, Flippen-Anderson J, Cook JM (2003) The Synthesis of a dicyclopenta [a, e] pentalene via a molybdenum hexacarbonyl-mediated tandem allenic Pauson− Khand reaction. J Am Chem Soc 125:3230–3231CrossRefGoogle Scholar
  33. 33.
    Cao H, Van Ornum SG, Deschamps J, Flippen-Anderson J, Laib F, Cook JM (2005) Synthesis of dicyclopenta [a,e] pentalenes via a molybdenum carbonyl mediated tandem allenic Pauson−Khand reaction and the X-ray. J Am Chem Soc 127:933–943CrossRefGoogle Scholar
  34. 34.
    Ashley AE, Cooper RT, Wildgoose GG, Green JC, Hare DO (2008) Homoleptic permethylpentalene complexes:“double metallocenes” of the first-row transition metals. J Am Chem Soc 130:15662–15677CrossRefGoogle Scholar
  35. 35.
    Yan-Chun L, Shui-Xing W, Zhong-Min S, Hou-Yu Z (2014) Can a linear metal–metal bonded array of tetravanadium is stabilized between two dicyclopenta pentalene ligands? A theoretical investigation. New J Chem 38:1092–1099CrossRefGoogle Scholar
  36. 36.
    Cotton FA, Daniels LM, Murillo CA, Pascual I (1997) Compounds with linear, bonded trichromium chains. J Am Chem Soc 119:10223–10224CrossRefGoogle Scholar
  37. 37.
    Cotton FA, Murillo CA, Wang, X (1999) Can crystal structure determine molecular structure? For Co3(dpa)4Cl2, yes. J Chem Soc Dalton Trans 3327–3328Google Scholar
  38. 38.
    Berry JF, Cotton FA, Daniels LM, Murillo CA, Wang X (2003) Oxidation of Ni3(dpa)4Cl2 and Cu3(dpa)4Cl2: nickel-nickel bonding interaction, but no copper-copper bonds. Inorg Chem 38:2655–2657Google Scholar
  39. 39.
    Berry JF, Cotton FA, Lei P, Murillo CA (2003) Further structural and magnetic studies of tricopper dipyridylamido complexes. Inorg Chem 42:377–382CrossRefGoogle Scholar
  40. 40.
    López X, Bénard M, Rohmer MM (2007) Influence of electron-attractor substituents on the magnetic properties of Ni(II) string complexes. Inorg Chem 46:5–7CrossRefGoogle Scholar
  41. 41.
    Rohmer MM, Bénard M (2002) Structural versatility in polyoxometalates and in some linear trimetallic complexes: an electronic interpretation. J Clust Sci 13:333–353CrossRefGoogle Scholar
  42. 42.
    Zouchoune B, Saiad A (2018) Ligands’ σ-donation and π-backdonation effects on metal-metal bonding in trinuclear [M3(Tr)2(L)3]2+ (M = Fe, Ni, Pd, Pt, Tr = Tropylium and L = CO, HCN and C2H4 ) sandwich compounds: theoretical investigation. Inorg Chim Acta 473:204–215.  https://doi.org/10.1016/j.ica.2018.01.004 CrossRefGoogle Scholar
  43. 43.
    Zouchoune B (2018) Stability and possible multiple metal-metal bonding in tetranuclear sandwich complexes of cyclooctatetraene ligand. Struct Chem.  https://doi.org/10.1007/s11224-018-1077-5
  44. 44.
    Zouchoune B, Zendaoui SM (2017) Why is bis-indenyl chromium a dimer? A DFT investigation. J Organomet Chem 858:47–52.  https://doi.org/10.1016/j.jorganchem.2017.12.035 CrossRefGoogle Scholar
  45. 45.
    Naili N, Zouchoune B (2017) Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation. Struct Chem 29(3):725–739.  https://doi.org/10.1007/s11224-017-1064-2 CrossRefGoogle Scholar
  46. 46.
    Fadli S, Zouchoune B (2017) Coordination chemistry and bonding analysis of tetranuclear transition metal pyrene sandwich complexes. Struct Chem 28(4):985–997.  https://doi.org/10.1007/s11224-016-0905-8 CrossRefGoogle Scholar
  47. 47.
    Bensalem N, Zouchoune B (2016) Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation. Struct Chem 27(6):1781–1792.  https://doi.org/10.1007/s11224-016-0798-6 CrossRefGoogle Scholar
  48. 48.
    Zendaoui SM, Zouchoune B (2013) Molecular properties and electronic structure of phenazine ligand in binuclear molybdenum and manganese metal complexes: a density functional theory study. Polyhedron 51:123–132CrossRefGoogle Scholar
  49. 49.
    Zendaoui SM, Saillard J-Y, Zouchoune B (2016) Ten-electron donor indenyl anion in binuclear transition-metal sandwich complexes: electronic structure and bonding analysis. Chemistry Select 1:940–948Google Scholar
  50. 50.
    Merzoug M, Zouchoune B (2014) Coordination diversity of the phenazine ligand in binuclear transition metal sandwich complexes: theoretical investigation. J Organomet Chem 770:69CrossRefGoogle Scholar
  51. 51.
    Zaiter A, Zouchoune B (2018) Electronic structure and energy decomposition of binuclear transition metal complexes containing β-diketiminate and imido ligands: spin state and metal’s nature effects. Struct Chem 29:1307CrossRefGoogle Scholar
  52. 52.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757CrossRefGoogle Scholar
  53. 53.
    Harvey JN (2006) On the accuracy of density functional theory in transition metal chemistry. Annu Rep Prog Chem Sect C 102:203–226CrossRefGoogle Scholar
  54. 54.
    Swart M (2013) Spin states of (bio)inorganic systems: successes and pitfalls. Int J Quantum Chem 113:2–7CrossRefGoogle Scholar
  55. 55.
    Swart M., Costas M (2015) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity; Eds.; Wiley: Oxford,Google Scholar
  56. 56.
    Swart M, Maja G (2016) Spinning around in transition-metal chemistry. Acc Chem Res 49:2697–2697CrossRefGoogle Scholar
  57. 57.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211CrossRefGoogle Scholar
  58. 58.
    Becke AD (1988) Accurate local approximation to the exchange-correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics. Opt Phys 38:3098–3100Google Scholar
  59. 59.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the in homogeneous electron gas. Phys Rev 33:8822–8824CrossRefGoogle Scholar
  60. 60.
    Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree-Fock-slater calculations I. Comput Proced Chem Phys 2:41–51Google Scholar
  61. 61.
    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96:9005CrossRefGoogle Scholar
  62. 62.
    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J Phys Chem 96:6937CrossRefGoogle Scholar
  63. 63.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond order donor acceptor perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. 64.
    Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Boh-mann J A, Morales C M, Weinhold F (2001) Natural bond orbitals “analysis programs”. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  65. 65.
    ADF2007.01, Theoretical Chemistry, Vrije Universiteit: Amsterdam, the Netherlands, SCMGoogle Scholar
  66. 66.
    Varetto U (2009) Molekel 5.4.0.8 (Swiss National Supercomputing Centre)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bachir Zouchoune
    • 1
    • 2
    Email author
  • Meriem Merzoug
    • 1
  • Narimene Bensalem
    • 1
  1. 1.Laboratoire de Chimie appliquée et Technologie des MatériauxUniversité Larbi Ben M’Hidi-Oum El BouaghiOum El BouaghiAlgeria
  2. 2.Unite de Recherche de Chimie de l’Environnement et Moleculaire StructuraleUniversité-Constantine (Mentouri)ConstantineAlgeria

Personalised recommendations