Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2205–2215 | Cite as

Halogen bonds in N-bromosuccinimide and other N-halosuccinimides

  • Pakorn BovonsombatEmail author
  • Samantha Stone
  • Miriam Rossi
  • Francesco CarusoEmail author
Original Research
  • 159 Downloads

Abstract

Our crystal data shows marked intermolecular Br interaction with a neighboring O (carbonyl) in the crystal, Br---O(carbonyl) = 2.767(1) Å, well below the sum of the corresponding van der Waals radii, 3.37 Å. This C=O---Br interaction is among the shortest in the CSD (only 8/2185 examples have a similar distance 2.725–2.800 Å). Only one carbonyl group interacts with the halogen atom, thus inducing a helical intermolecular arrangement. The halogen bond was also studied with density functional theory (DFT) methods, based on coordinates of two molecules in the crystal packing, widely modifying the N-Br---O(carbonyl) angle. In each calculation, this angle was fixed, and the corresponding arrangements were analyzed for potential structural correlation. Indeed, the widening of the N-Br---O(carbonyl) angle correlates with a gradual increase of halogen bond interaction Br---O(carbonyl), that is, shorter separation. It is also seen that decreasing the N-Br---O(carbonyl) angle is associated with decreasing Br---Br separation. Isosurface electron density shows the presence of Br sigma-holes in the two-molecule arrangements.

Keywords

Halogen bond N-Bromosuccinimide Crystal structure DFT 

Notes

Acknowledgments

We thank the US National Science Foundation through grant 0521237 for the X-ray diffractometer. PB is grateful to the support of Mahidol University International College, Mahidol University, Thailand.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1321_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1775 kb)

References

  1. 1.
    Mundy BP, Ellerd MG, Favaloro Jr FG (2005) Name reactions and reagents in organic synthesis 2nd edn. Wiley, NJ, pp 820–821Google Scholar
  2. 2.
    Golebiewski WM Gucma M (2007) Applications of N-chlorosuccinimide in organic synthesis Synthesis 3599–3619Google Scholar
  3. 3.
    Goldberg Y, Alper H (1993) Biphasic electrophilic halogenation of activated aromatics and heteroaromatics with N-halosuccinimides catalyzed by perchloric acid. J Org Chem 58:3072–3075Google Scholar
  4. 4.
    Bovonsombat P, McNelis E. (1993) Ring halogenations of polyalkylbenzenes with N-halosuccinimide and acidic catalysts. Synthesis 237–240Google Scholar
  5. 5.
    Bovonsombat P, Ali R, Khan C, Leykajarakul J, Pla-on K, Aphimanchindakul S, Pungcharoenpong N, Timsuea N, Arunrat A, Punpongjareorn N (2010) Facile p-toluenesulfonic acid-promoted para-selective monobromination and chlorination of phenol and analogues. Tetrahedron 66:6928–6935Google Scholar
  6. 6.
    Duan S, Turk J, Speigle J, Corbin J, Masnovi J, Baker RJ (2000) Halogenations of anthracenes and dibenz[a,c]anthracene with N-bromosuccinimide and N-chlorosuccinimide. J Org Chem 65:3005–3009PubMedGoogle Scholar
  7. 7.
    Tanemura K, Suzuki T, Nishida Y, Satsumabayashi K, Horaguchi T (2003) Halogenation of aromatic compounds by N-chloro-, N-bromo-, and N-iodosuccinimide. Chem Lett 32:932–933Google Scholar
  8. 8.
    Zhang Y, Shibatomi K, Yamamoto H (2005) Lewis acid catalyzed highly selective halogenation of aromatic compounds. Synlett 2837–2842Google Scholar
  9. 9.
    Qiu D, Mo F, Zheng Z, Zhang Y, Wang J (2010) Gold(III)-catalyzed halogenation of aromatic boronates with N-halosuccinimides. Org Lett 12:5474–5477PubMedGoogle Scholar
  10. 10.
    Prakash GKS, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA (2004) N-Halosuccinimide/BF3−H2O, efficient electrophilic halogenating systems for aromatics. J Am Chem Soc 126:15770–15776PubMedGoogle Scholar
  11. 11.
    Mahajan T, Kumar L, Dwivedi K, Agarwal DD (2012) Efficient and facile chlorination of industrially-important aromatic compounds using NaCl/p-TsOH/NCS in aqueous media. Ind Eng Chem Res 51:3881–3886Google Scholar
  12. 12.
    Djerassi C (1948) Brominations with N-bromosuccinimide and related compounds. The Wohl-Ziegler reaction. Chem Rev 43:271–317PubMedGoogle Scholar
  13. 13.
    Filler R (1963) Oxidations and dehydrogenations with N-bromosuccinimide and related N-haloimides. Chem Rev 63:21–43Google Scholar
  14. 14.
    Horner L, Winkelmann EH (1959) Neuere methoden der präparativen organischen chemie II 14. N-Bromsuccinimid, eigenschaften und reaktionsweisen studien zum ablauf der substitution XV. Angew Chem 71:349–365Google Scholar
  15. 15.
    Bergmann ED, Szmuszkovicz JA (1951) New synthesis of 3,4,5,6-dibenzphenanthrene. J Am Chem Soc 73:5153–5155Google Scholar
  16. 16.
    Weber E, Csoregh I, Stensland B, Czugler M (1984) A novel clathrate design: selective inclusion of uncharged molecules via the binaphthyl hinge and appended coordinating groups. X-ray crystal structures and binding modes of 1,1′-binaphthyl-2,2′-dicarboxylic acid host/hydroxylic guest inclusions. J Am Chem Soc 106:3297–3306Google Scholar
  17. 17.
    Seeger DE, Lahti PM, Rossi AR, Berson JA (1986) Synthesis of two bis-m-quinomethanes. An experimental study of connectivity effects on the equal-parity criterion for low-spin ground states in alternant non-Kekule molecules. J Am Chem Soc 108:1251–1265Google Scholar
  18. 18.
    Dauben WG, Kohler B, Roesle (1985) A Synthesis of 6-fluorovitamin D3. J Org Chem 50:2007–2010Google Scholar
  19. 19.
    Greenwood FL, Kellert D, Sedlak J (1958) 4-Bromo-2-heptene. Org Synth 38:8Google Scholar
  20. 20.
    Campaigne E, Tullar BF (1953) 3-Thenyl bromide. Org Synth 33:96Google Scholar
  21. 21.
    Anzalone L, Hirsch JA (1985) Substituent effects on hydrogenation of aromatic rings: hydrogenation vs. hydrogenolysis in cyclic analogs of benzyl ethers. J Org Chem 50:2128–2133Google Scholar
  22. 22.
    Gilbert JC, Giamalva DH, Baze ME (1985) Intramolecular carbon-hydrogen insertions of alkylidenecarbenes. 2. Stereochemistry and isotope effects. J Org Chem 50:2557–2563Google Scholar
  23. 23.
    Tashiro M, Yamato T (1985) Metacyclophanes and related compounds. 14. Preparation of 8,16-difluoro[2.2]metacyclophane. J Org Chem 50:2939–2942Google Scholar
  24. 24.
    Dubey SK, Kumar S (1986) Synthesis of dihydro diols and diol epoxides of benzo[f]quinolone. J Org Chem 51:3407–3412Google Scholar
  25. 25.
    Konishi H, Aritomi K, Okano T, Kiji J (1989) A mild selective monobromination reagent system for alkoxybenzenes; N-bromosuccinimide-silica gel. Bull Chem Soc Jpn 62:591–593Google Scholar
  26. 26.
    Paul V, Sudalai A, Daniel T, Srinivasan KV (1994) Regioselective bromination of activated aromatic substrates with N-bromosuccinimide over HZSM-5. Tetrahedron Lett 35:7055–7056Google Scholar
  27. 27.
    Oberhauser T (1997) A new bromination method for phenols and anisoles: NBS/HBF4·Et2O in CH3CN. J Org Chem 62:4504–4506PubMedGoogle Scholar
  28. 28.
    Ganguly NC, De P, Dutta S (2005) Mild regioselective monobromination of activated aromatics and heteroaromatics with N-bromosuccinimide in tetrabutylammonium bromide. Synthesis 1103–1105Google Scholar
  29. 29.
    Das B, Venkateswarlu K, Krishnaiah M, Holla H (2006) An efficient, rapid and regioselective nuclear bromination of aromatics and heteroaromatics with NBS using sulfonic-acid-functionalized silica as a heterogeneous recyclable catalyst. Tetrahedron Lett 47:8693–8697Google Scholar
  30. 30.
    Das B, Vengkateswarlu K, Majhi A, Siddaiah V, Reddy KR (2007) A facile nuclear bromination of phenols and anilines using NBS in the presence of ammonium acetate as a catalyst. J Mol Catal A Chem 267:30–33Google Scholar
  31. 31.
    Carreño MC, García Ruano JL, Sanz G, Toledo MA Urbano A (1995) N-Bromosuccinimide in acetonitrile: a mild and regiospecific nuclear brominating reagent for methoxybenzenes and naphthalenes. J Org Chem 60:5828–5331Google Scholar
  32. 32.
    Rajesh K, Somasundaram M, Saiganesh R, Balasubramanian KK (2007) Bromination of deactivated aromatics: a simple and efficient method. J Org Chem 72:5867–5869PubMedGoogle Scholar
  33. 33.
    Shao L-X, Shi M (2006) N-Bromosuccinimide and lithium bromide: an efficient combination for the dibromination of carbon-carbon unsaturated bonds Synlett 1269–1271Google Scholar
  34. 34.
    Haira S, Maji B, Bar S (2007) Samarium triflate-catalyzed halogen-promoted Friedel−crafts alkylation with alkenes. Org Lett 9:2783–2786Google Scholar
  35. 35.
    Thakur VV, Talluri SK, Sudalai A (2003) Transition metal-catalyzed regio- and stereoselective aminobromination of olefins with TsNH2 and NBS as nitrogen and bromine sources. Org Lett 5:861–864PubMedGoogle Scholar
  36. 36.
    Wang Z, Zhang Y.; Fu, H, Jiang Y, Zhao Y (2008) FeCl2-catalyzed aminobromination of alkenes using amides or sulfonamides and NBS as the nitrogen and bromine sources. Synlett 2667–2668Google Scholar
  37. 37.
    Yu WZ, Chen F, Cheng YA, Yeung Y-Y (2015) Catalyst-free and metal-free electrophilic bromoamidation of unactivated olefins using the N-bromosuccinimide/sulfonamide protocol. J Org Chem 80:2815–2821PubMedGoogle Scholar
  38. 38.
    Gao F, Hoveyda AH (2010) α-Selective Ni-catalyzed hydroalumination of aryl- and alkyl-substituted terminal alkynes: practical syntheses of internal vinyl aluminums, halides, or boronates. J Am Chem Soc 132:10961–10963PubMedPubMedCentralGoogle Scholar
  39. 39.
    Chen Z, Li J, Jiang H, Zhu S, Li Y, Qi C (2010) Silver-catalyzed disfunctionalization of terminal alkynes: highly regio- and stereoselective synthesis of (Z)-β-haloenol acetates. Org Lett 12:3262–3265PubMedGoogle Scholar
  40. 40.
    Bovonsombat P, Rujiwarangkul R, Bowornkiengkai T, Leykajarakul J (2007) α-Bromination of linear enals and cyclic enones. Tetrahedron Lett 48:8607–8610Google Scholar
  41. 41.
    Jyothi D, HariPrasad S (2009) A remarkably simple one-step procedure for the preparation of α-bromo-α,β-unsaturated carbonyl compounds Synlett 2309–2311Google Scholar
  42. 42.
    Kuhl N, Schröder N, Glorius F (2013) Rh(III)-catalyzed halogenation of vinylic C–H bonds: rapid and general access to Z-halo acrylamides. Org Lett 15:3860–3863PubMedGoogle Scholar
  43. 43.
    Angara GJ, McNelis EJ (1991) α-Haloenones from secondary alkynols. Tetrahedron Lett 32:2099–2100Google Scholar
  44. 44.
    Ye L, Zhang L (2009) Practical synthesis of linear α-iodo/bromo-α,β-unsaturated aldehydes/ketones from propargylic alcohols via au/Mo bimetallic catalysis. Org Lett 11:3646–3649PubMedGoogle Scholar
  45. 45.
    Prakash Das J, Roy S (2002) Catalytic Hunsdiecker reaction of α,β-unsaturated carboxylic acids: how efficient is the catalyst? J Org Chem 67:7861–7864Google Scholar
  46. 46.
    Kuang C, Yang Q, Senboku H, Tokuda M (2005) Stereoselective synthesis of (E)-β-arylvinyl bromides by microwave-induced Hunsdiecker-type reaction. Synthesis. 1319–1325Google Scholar
  47. 47.
    Narender M, Reddy MS, Rao KR (2004) A mild and efficient oxidative deprotection of THP ethers with NBS in the presence of β-cyclodextrin in water. Synthesis 1741–1743Google Scholar
  48. 48.
    Olah GA, Wang Q, Sanford G, Surya Prakash GK (1993) Synthetic methods and reactions. 181. Iodination of deactivated aromatics with N-iodosuccinimide in trifluoromethanesulfonic acid (NIS-CF3SO3H) via in situ generated superelectrophilic iodine(I) trifluoromethanesulfonate. J Org Chem 58:3194–3195Google Scholar
  49. 49.
    Bovonsombat P, Angara GJ, McNelis E (1992) Use of Koser's reagent for the iodination of the rings of polyalkylbenzenes. Synlett 131–132Google Scholar
  50. 50.
    Carreño MC, García Ruano JL, Sanz G, Toledo MA, Urbano A (1995) N-Bromosuccinimide in acetonitrile: a mild and regiospecific nuclear brominating reagent for methoxybenzenes and naphthalenes. J Org Chem 60:5328–5331Google Scholar
  51. 51.
    Carreño MC, García Ruano JL, Sanz G, Toledo MA, Urbano A (1996) Mild and regiospecific nuclear iodination of methoxybenzenes and naphthalenes with N-iodosuccinimide in acetonitrile. Tetrahedron Lett 37:4081–4084Google Scholar
  52. 52.
    Castanet A-S, Colobert F, Broutin P-E (2002) Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimide and catalytic trifluoroacetic acid. Tetrahedron Lett 43:5047–5048Google Scholar
  53. 53.
    Bovonsombat P, Khanthapura P, Krause MM, Leykajarakul J (2008) Facile syntheses of 3-halo and mixed 3,5-dihalo analogues of N-acetyl-L-tyrosine via sulfonic acid-catalyzed regioselective monohalogenation. Tetrahedron Lett 49:7008–7011Google Scholar
  54. 54.
    Bovonsombat P, Sophanpanichkul P, Pandey A, Tungsirisurp S, Limthavornlit P, Chobtumskul K, Kuhataparuk P, Sathityatiwat S, Teecomegaet P (2015) Novel regioselective aromatic chlorination via catalytic thiourea activation of N-chlorosuccinimide. Tetrahedron Lett 56:2193–2196Google Scholar
  55. 55.
    Bovonsombat P, Teecomegaet P, Kulvaranon P, Pandey A, Chobtumskul K, Tungsirisurp S, Sophanpanichkul P, Losuwanakul S, Soimaneewan D, Kanjanwongpaisan P, Siricharoensang P, Choosakoonkriang S (2017) Regioselective monobromination of aromatics via a halogen bond acceptor-donor interaction of catalytic thioamide and N-bromosuccinimide. Tetrahedron 73:6564–6572Google Scholar
  56. 56.
    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601PubMedPubMedCentralGoogle Scholar
  57. 57.
    Brown RN (1961) The crystal structure of N-chlorosuccinimide. Acta Crystallogr 14:711–715Google Scholar
  58. 58.
    Jabay O, Pritzkow H, Jander J (1977) Untersuchungen an Stickstoff-Brom-Verbindungen, IV. Studies on nitrogen-bromine compounds, IV. Z Naturforsch B. Chem Sci 32B:1416–1420Google Scholar
  59. 59.
    Padmanabhan K, Paul IC, Curtin DY (1990) Structure of N-lodosuccinimide. Acta Crystallogr Sect C Cryst Struct Commun 46:88–92Google Scholar
  60. 60.
    Erakovic M, Nemec N, Lez T, Porupski I, Stilinovic V, Cincic D (2018) Halogen bonding of N-bromophthalimide by grinding and solution crystallization. Cryst Growth Des 18:1182–1190Google Scholar
  61. 61.
    Shipley GG, Wallwork SC (1967) Molecular complexes exhibiting polarization bonding. VIII. The crystal structures of the 1:1 complexes formed by p-​chlorophenol and p-​bromophenol with p-​benzoquinone. Acta Crystallogr 22:593–601Google Scholar
  62. 62.
    Lundgren G, Aurivillius B (1964) Crystal structure of bromomalonic dialdehyde. Acta Chem Scand 18:1642–1652Google Scholar
  63. 63.
    Walsh RB, Padgett CW, Metrangolo P, Resnati G, Hanks TW, Pennington WT (2001) Crystal engineering through halogen bonding: complexes of nitrogen heterocycles with organic iodides. Cryst Growth Des 1:165–175Google Scholar
  64. 64.
    Cincic D, Friscic T, Jones W (2008) Isostructural materials achieved by using structurally equivalent donors and acceptors in halogen-bonded cocrystals. Chem Eur J 14:747–753PubMedGoogle Scholar
  65. 65.
    Arman HD, Gieseking RL, Hanks TW, Pennington WT (2010) Complementary halogen and hydrogen bonding: sulfur-iodine interactions and thioamide ribbons. Chem Commun 46:1854–1856Google Scholar
  66. 66.
    Bovonsombat P, Caruso F, Jdaydani A, Rossi M (2013) Halogen bonding in (Z)-2-iodocinnamaldehyde. Molecules 13:8712–8724Google Scholar
  67. 67.
    Dauben Jr HJ, McCoy LL (1959) N-Bromosuccinimide. I. Allylic bromination, a general survey of reaction variables. J Amer Chem Soc 81:4863–4873Google Scholar
  68. 68.
    Armarego WLF, Chai CLL (2009) Purification of laboratory chemicals6th edn. Elsevier, Oxford, p 105Google Scholar
  69. 69.
    Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122Google Scholar
  70. 70.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764Google Scholar
  71. 71.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Cond Mat Mater Phys 46:6671–6687Google Scholar
  72. 72.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A38:3098–3100Google Scholar
  73. 73.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B45:13244–13249Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mahidol University International CollegeMahidol UniversitySalayaThailand
  2. 2.Department of ChemistryVassar CollegePoughkeepsieUSA

Personalised recommendations