Structural Chemistry

, Volume 30, Issue 6, pp 2109–2122 | Cite as

Structure, stability and reactivity of neutral bimetallic manganese oxide clusters with CO and NO—a DFT study

  • Suresh Sampathkumar
  • Vijayakumar Subramaniam
  • Selvarengan ParanthamanEmail author
Original Research


In this work, the structure, stability and reactivity of neutral bimetallic manganese oxide clusters MnMdO2–4 (Md = Ti, V and Cr) with CO and NO are investigated by means of density functional theory (DFT). The hybrid PBE0 with TZVP basis set is employed to obtain MnMdO2–4 minimum energy structures, reactants, reaction intermediates, transition states and products. Our calculations show that the structural parameters are significantly altered when replacing Mn with Ti, V or Cr. All the clusters considered in this study have higher binding energy per atom, which implies that they are highly stable. Further, these clusters have smaller oxygen dissociation energy than CO2 and NO2. This indicates that the O atom can easily dissociate from these clusters and form CO2 and NO2. Our reactivity study shows that the CO and NO oxidation by MnTiO4 cluster is a favourable reaction. These oxidation reactions are barrierless and thermodynamically and kinetically favourable. Therefore, MnTiO4 can be used as a suitable catalyst for CO and NO oxidation. From this study, it is concluded that the titanium-supported manganese oxide will be a suitable catalyst for the CO and NO oxidation in the condensed phase.


Density functional theory Metal oxide clusters Reactivity CO oxidation NO oxidation 



The authors (S.S. and S.P.) are thankful to the Science and Engineering Research Board, Govt. of India, for the financial support in the form of the project (YSS/2015/001311).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1319_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2499 kb)


  1. 1.
    Fiero GJL (2006) Metal oxides chemistry and applications. Taylor & Francis, LondonGoogle Scholar
  2. 2.
    Liu C, Shi J-W, Gao C, Niu C (2016) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review. Appl Catal A Gen 522:54–69Google Scholar
  3. 3.
    Gao J, Jia C, Zhang L, Wang H, Yang Y, Hung S-F, Hsu Y-Y, Liu B (2016) Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. J Catal 341:82–90Google Scholar
  4. 4.
    Keav S, Matam S, Ferri D, Weidenkaff A (2014) Structured perovskite-based catalysts and their application as three-way catalytic converters—a review. Catalysts 4(3):226–255Google Scholar
  5. 5.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50(2):353–367Google Scholar
  6. 6.
    Ko C, Kerman K, Ramanathan S (2012) Ultra-thin film solid oxide fuel cells utilizing un-doped nanostructured zirconia electrolytes. J Power Sources 213:343–349Google Scholar
  7. 7.
    Shao Z, Haile SM (2011) A high-performance cathode for the next generation of solid-oxide fuel cells. Materials for Sustainable Energy, pp 255–258Google Scholar
  8. 8.
    Zhao C, Wachs IE (2006) Selective oxidation of propylene to acrolein over supported V2O5/Nb2O5 catalysts: an in situ Raman, IR, TPSR and kinetic study. Catal Today 118(3–4):332–343Google Scholar
  9. 9.
    Gu D, Jia C-J, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Schüth F (2015) Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. J Am Chem Soc 137(35):11407–11418PubMedGoogle Scholar
  10. 10.
    Resasco J, Dai S, Graham G, Pan X, Christopher P (2018) Combining in-situ transmission electron microscopy and infrared spectroscopy for understanding dynamic and atomic-scale features of supported metal catalysts. J Phys Chem C 122(44):25143–25157Google Scholar
  11. 11.
    Chen X, Wu C, Guo Z (2018) Synthesis of efficient Cu/CoFe2O4 catalysts for low temperature CO oxidation. Catal Lett, pp 1–11Google Scholar
  12. 12.
    Yang Z, Li H, Liu X, Li P, Yang J, Lee P-H, Shih K (2018) Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation. Fuel 227:79–88Google Scholar
  13. 13.
    Guo Z, Liang Q-H, Yang Z, Liu S, Huang Z-H, Kang F (2016) Modifying porous carbon nanofibers with MnOx–CeO2–Al2O3 mixed oxides for NO catalytic oxidation at room temperature. Catal. Sci. Technol 6(2):422–425Google Scholar
  14. 14.
    Wu Z, Tang N, Xiao L, Liu Y, Wang H (2010) MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. J Colloid Interface Sci 352(1):143–148PubMedGoogle Scholar
  15. 15.
    Wang LN, Li XN, Jiang LX, Yang B, Liu QY, Xu HG, Zheng WJ, He SG (2018) Catalytic CO oxidation by O2 mediated by noble-metal-free cluster anions Cu2VO3–5 . Angew Chem 130(13):3407–3411Google Scholar
  16. 16.
    Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504Google Scholar
  17. 17.
    Sakuma K, Miyajima K, Mafuné F (2013) Oxidation of CO by nickel oxide clusters revealed by post heating. J Phys Chem A 117(16):3260–3265PubMedGoogle Scholar
  18. 18.
    Acikgoz M, Harrell J, Pavanello M (2018) Seeking a structure–function relationship for γ-Al2O3 surfaces. J Phys Chem C 122(44):25314–25330Google Scholar
  19. 19.
    Yuan H, Chen J, Guo Y, Wang H, Hu P (2018) Insight into the superior catalytic activity of MnO2 for low-content NO oxidation at room temperature. J Phys Chem C 122(44):25365–25373Google Scholar
  20. 20.
    Tian LH, Zhao YX, Wu XN, Ding XL, He SG, Ma TM (2012) Structures and reactivity of oxygen-rich scandium cluster anions ScO3–5 . ChemPhysChem 13(5):1282–1288PubMedGoogle Scholar
  21. 21.
    Zhong H, Er D, Wen L (2017) Theoretical study on influence of CaO and MgO on the reduction of FeO by CO. Appl Surf Sci 399:630–637Google Scholar
  22. 22.
    Wang Z-C, Yin S, Bernstein ER (2012) Gas-phase neutral binary oxide clusters: distribution, structure, and reactivity toward CO. J. Phys. Chem. Lett 3(17):2415–2419PubMedGoogle Scholar
  23. 23.
    Kumavat S, Deshpande M (2014) Alkali metal doped nickel oxide clusters: a density functional study. Comput. Theor. Chem 1035:19–27Google Scholar
  24. 24.
    Li J, González-Navarrete P, Schlangen M, Schwarz H (2015) Activation of methane and carbon dioxide mediated by transition-metal doped magnesium oxide clusters [MMgO]+/0/− (M = Sc–Zn). Chem Eur J 21(21):7780–7789PubMedGoogle Scholar
  25. 25.
    Fang H-L, Xu L, Li J, Wang B, Zhang Y-F, Huang X (2015) Catalytic oxidation of CO by N2O on neutral Y2MO5 (M = Y, Al) clusters: a density functional theory study. RSC Adv 5(93):76651–76659Google Scholar
  26. 26.
    Liu H, Liew KM, Pan C (2014) The role of F-dopants in adsorption of gases on anatase TiO2 (001) surface: a first-principles study. RSC Adv 4(68):35928–35942Google Scholar
  27. 27.
    Xiong G, Yang C, Zhu W, Xiao H (2016) Density functional theory study of high-energy metal (Al, Mg, Ti, and Zr)/CuO composites. RSC Adv 6(93):90206–90211Google Scholar
  28. 28.
    Johnson GE, Tyo EC, Castleman Jr AW (2008) Oxidation of CO by aluminum oxide cluster ions in the gas phase. J Phys Chem A 112(21):4732–4735PubMedGoogle Scholar
  29. 29.
    Xie Y, Dong F, Heinbuch S, Rocca JJ, Bernstein ER (2010) Oxidation reactions on neutral cobalt oxide clusters: experimental and theoretical studies. Phys Chem Chem Phys 12(4):947–959PubMedGoogle Scholar
  30. 30.
    Matsuda Y, Bernstein ER (2005) Identification, structure, and spectroscopy of neutral vanadium oxide clusters. J Phys Chem A 109(17):3803–3811PubMedGoogle Scholar
  31. 31.
    Matsuda Y, Bernstein ER (2005) On the titanium oxide neutral cluster distribution in the gas phase: detection through 118 nm single-photon and 193 nm multiphoton ionization. J Phys Chem A 109(2):314–319PubMedGoogle Scholar
  32. 32.
    Yin S, Bernstein ER (2012) Gas phase chemistry of neutral metal clusters: distribution, reactivity and catalysis. Int J Mass Spectrom 321:49–65Google Scholar
  33. 33.
    Wang Z-C, Yin S, Bernstein ER (2013) Catalytic oxidation of CO by N2O conducted via the neutral oxide cluster couple VO2/VO3. Phys Chem Chem Phys 15(25):10429–10434PubMedGoogle Scholar
  34. 34.
    Yin S, Wang Z, Bernstein ER (2013) O-atom transport catalysis by neutral manganese oxide clusters in the gas phase: reactions with CO, C2H4, NO2, and O2. J Chem Phys 139(8):084307PubMedGoogle Scholar
  35. 35.
    Wang Z-C, Yin S, Bernstein ER (2013) Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C–H bond activation. J Chem Phys 139(19):194313PubMedGoogle Scholar
  36. 36.
    Yin S, Bernstein ER (2016) Ethylene C–H bond activation by neutral Mn2O5 clusters under visible light irradiation. J. Phys. Chem. Lett 7(9):1709–1716PubMedGoogle Scholar
  37. 37.
    Iyemperumal SK, Pham TD, Bauer J, Deskins NA (2018) Quantifying support interactions and reactivity trends of single metal atom catalysts over TiO2. J Phys Chem C 122(44):25274–25289Google Scholar
  38. 38.
    McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113(6):4391–4427PubMedGoogle Scholar
  39. 39.
    Tosoni S, Pacchioni G (2019) Oxide-supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11:73–89Google Scholar
  40. 40.
    Thang HV, Pacchioni G (2018) CO oxidation promoted by a Pt4/TiO2 catalyst: role of lattice oxygen at the metal/oxide interface. Catal Lett, pp 1–9Google Scholar
  41. 41.
    He H, Chen J, Zhang D, Li F, Chen X, Chen Y, Bian L, Wang Q, Duan P, Wen Z (2018) Modulating the electrocatalytic performance of palladium with the electronic metal–support interaction: a case study on oxygen evolution reaction. ACS Catal 8(7):6617–6626Google Scholar
  42. 42.
    Alizadeh M, Hosseini SA, Nouri SMM, Khalighi Z, Delfarah B (2018) Low-cost nanostructured Fe2O3-based composite catalysts synthesized by mechanical milling for CO oxidation reaction. Chem Eng Commun 205(8):1041–1049Google Scholar
  43. 43.
    Alphonse P (2016) Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature. Appl Catal B Environ 180:715–725Google Scholar
  44. 44.
    Wischert R, Laurent P, Copéret C, Fo D, Sautet P (2012) γ-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of “defect” sites. J Am Chem Soc 134(35):14430–14449PubMedGoogle Scholar
  45. 45.
    Zhao Y-X, Li Z-Y, Yang Y, He S-G (2018) Methane activation by gas phase atomic clusters. Acc Chem Res 51(11):2603–2610PubMedGoogle Scholar
  46. 46.
    Nößler M, Mitrić R, Bonačić-Koutecký V, Johnson GE, Tyo EC, Castleman Jr AW (2010) Generation of oxygen radical centers in binary neutral metal oxide clusters for catalytic oxidation reactions. Angew Chem Int Ed 49(2):407–410Google Scholar
  47. 47.
    Wang X, Lan Z, Zhang K, Chen J, Jiang L, Wang R (2017) Structure–activity relationships of AMn2O4 (A = Cu and Co) spinels in selective catalytic reduction of NOx: experimental and theoretical study. J Phys Chem C 121(6):3339–3349Google Scholar
  48. 48.
    Chen J-J, Yang Y, Zhao Y-X, He S-G (2018) Vacuum ultraviolet ionization-induced reaction of neutral Au2Al2O3 clusters with methane. J Phys Chem C 122(11):6159–6165Google Scholar
  49. 49.
    Marks JH, Ward TB, Duncan MA (2018) Photodissociation of manganese oxide cluster cations. J Phys Chem A 122(13):3383–3390PubMedGoogle Scholar
  50. 50.
    Han Y-F, Chen F, Zhong Z-Y, Ramesh K, Widjaja E, Chen L-W (2006) Synthesis and characterization of Mn3O4 and Mn2O3 nanocrystals on SBA-15: novel combustion catalysts at low reaction temperatures. Catal Commun 7(10):739–744Google Scholar
  51. 51.
    Han Y-F, Chen F, Zhong Z, Ramesh K, Chen L, Widjaja E (2006) Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J Phys Chem B 110(48):24450–24456PubMedGoogle Scholar
  52. 52.
    Frey K, Iablokov V, Sáfrán G, Osán J, Sajó I, Szukiewicz R, Chenakin S, Kruse N (2012) Nanostructured MnOx as highly active catalyst for CO oxidation. J Catal 287:30–36Google Scholar
  53. 53.
    Ching S, Kriz DA, Luthy KM, Njagi EC, Suib SL (2011) Self-assembly of manganese oxide nanoparticles and hollow spheres. Catalytic activity in carbon monoxide oxidation. Chem Commun 47(29):8286–8288Google Scholar
  54. 54.
    Xi Y, Ren J-C (2016) Design of a CO oxidation catalyst based on two-dimensional MnO2. J Phys Chem C 120(42):24302–24306Google Scholar
  55. 55.
    Li K, Chen J, Peng Y, Lin W, Yan T, Li J (2017) The relationship between surface open cells of α-MnO2 and CO oxidation ability from a surface point of view. J Mater Chem A 5(39):20911–20921Google Scholar
  56. 56.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170Google Scholar
  57. 57.
    Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835Google Scholar
  58. 58.
    Nößler M, Mitrić R, Bonačić-Koutecký V (2012) Binary neutral metal oxide clusters with oxygen radical centers for catalytic oxidation reactions: from cluster models toward surfaces. J Phys Chem C 116(21):11570–11574Google Scholar
  59. 59.
    Lousada CM, Johansson AJ, Brinck T, Jonsson M (2013) Reactivity of metal oxide clusters with hydrogen peroxide and water—a DFT study evaluating the performance of different exchange–correlation functionals. Phys Chem Chem Phys 15(15):5539–5552PubMedGoogle Scholar
  60. 60.
    Frisch M J TGW, Schlegel H B, Scuseria G, E RMA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji, H CM, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg, J L HM, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima, T HY, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro, F BM, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi, R NJ, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi, J CM, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo, C JJ, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli, C OJW, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador, P DJJ, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz, J V CJAFDJ (2009) Gaussian 09, Revision B.01. Wallingford CTGoogle Scholar
  61. 61.
    Wang Y, Gong X, Wang J (2010) Comparative DFT study of structure and magnetism of TMnOm (TM = Sc–Mn, n = 1–2, m = 1–6) clusters. Phys Chem Chem Phys 12(10):2471–2477PubMedGoogle Scholar
  62. 62.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489Google Scholar
  63. 63.
    Li L, Qu L, Cheng J, Li J, Hao Z (2009) Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Appl Catal B Environ 88(1–2):224–231Google Scholar
  64. 64.
    Li L, Shen Q, Cheng J, Hao Z (2010) Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties. Appl Catal B Environ 93(3–4):259–266Google Scholar
  65. 65.
    Yuan H, Chen J, Wang H, Hu P (2018) Activity trend for low-concentration NO oxidation at room temperature on rutile-type metal oxides. ACS Catal 8(11):10864–10870Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and International Research CentreKalasalingam Academy of Research and Education (Deemed to be University)KrishnankoilIndia
  2. 2.Department of Medical PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations