Structural Chemistry

, Volume 30, Issue 5, pp 1805–1818 | Cite as

Theoretical study of the thermodynamic parameters of (CaO)n nanoclusters with n = 2–16 in the gas and solution phases: proton affinity, molecular basicity, and pKb values

  • Rahman Zobeydi
  • Pegah Nazari
  • Shahrbanoo Rahman SetayeshEmail author
Original Research


Thermodynamic quantities such as proton affinity (PA) and molecular basicity (GB) for (CaO)n nanoclusters with n = 2–16 have been calculated using three computational models of the density functional theory (DFT) (Becke, 3-parameter, Lee-Yang-Parr (B3LYP), Minnesota 2006, Perdew-Wang 1991 (PW91), Coulomb attenuated method-B3LYP, and ωB97XD functionals); Møller-Plesset perturbation theory; and Hartree-Fock with the cc-PVNZ (n = D and T) basis set in the gas phase. Absolute deviation error (AAD%) indicates that obtained PA and GB values using DFT model and the B3LYP method with mean percentage errors of 0.77 and 0.90%, respectively, have the higher accuracy than the other methods and models. The values obtained for the proton affinity and gas-phase basicity of the nanoclusters were compared to experimental data reported in the literature. In order to confirm basicity properties, quantum descriptors of the molecular electrostatic potential (MEP) and valence natural atomic orbital energies (NAO) have been computed. The MEP and NAO values for species under probe display excellent correlation coefficient. The polarizable continuum model for investigating the solvents effect of water, DMSO, and benzene on the basicity of the CaO nanoclusters has been applied.


Proton affinity Molecular basicity CaO nanocluster MEP NAO 



The author gives special thanks go to the Department of Chemistry and High Performance Computing Center (SHPCC) of Sharif University of Technology to provide the computational resources.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1318_MOESM1_ESM.doc (2.7 mb)
ESM 1 (DOC 2.74 mb)


  1. 1.
    Stewart R (1985) The proton: appellation to organic chemistry. Academic Press, NewYorkGoogle Scholar
  2. 2.
    Carrol FA (1998) Perspectives on structure and mechanism in organic chemistry. Brooks-Cole, New YorkGoogle Scholar
  3. 3.
    Zhao J, Zhang RY (2004). Atmos Environ 38:2177CrossRefGoogle Scholar
  4. 4.
    Enami S, Mishra H, Hoffmann MR, Colussi AJ (2012). J Phys Chem A 116:6027CrossRefGoogle Scholar
  5. 5.
    Kennedy RA, Mayhew CA, Thomas R, Watts P (2003). Int J Mass Spectrom 223:627CrossRefGoogle Scholar
  6. 6.
    Salaeh R, Prommin C, Chansen W, Kerdpol K, Daengngern R, Kungwan N (2018). J Mol Liq 252:428CrossRefGoogle Scholar
  7. 7.
    Zhang N, Yi H, Zeng D, Zhao Z, Wang W, Costanzo F (2018). Chem Phys 502:77CrossRefGoogle Scholar
  8. 8.
    Abdolmaleki A, Eskandari K, Molavian MR (2016). Polym. 87:181CrossRefGoogle Scholar
  9. 9.
    Fatollahpour M, Tahermansouri H (2017). CR Chim 20:942CrossRefGoogle Scholar
  10. 10.
    Iizuka T, Hattori H, Ohno Y, Sohma J, Tanabe K (1971). J.Catal. 22:130CrossRefGoogle Scholar
  11. 11.
    Yoosuk BU, domsap P, Puttasawat B, Krasae P (2010). Chem Eng J 162:135CrossRefGoogle Scholar
  12. 12.
    Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008). Fuel. 87:2798CrossRefGoogle Scholar
  13. 13.
    Uggerud E (1992). Mass Spectrom Rev 11:389CrossRefGoogle Scholar
  14. 14.
    Deakyne CA (2003). Int J Mass Spectrom 227:601CrossRefGoogle Scholar
  15. 15.
    Gal J-F, Maria P-C, Raczynska ED (2001). J Mass Spectrom 36:699Google Scholar
  16. 16.
    Meot-Ner M (2005). Chem Rev 105:213CrossRefGoogle Scholar
  17. 17.
    Meot-Ner M (2003). Int J Mass Spectrom 227:525CrossRefGoogle Scholar
  18. 18.
    Bleiholder C, Suhai S, Paizs B (2006). J Am Soc Mass Spectrom 17:1275CrossRefGoogle Scholar
  19. 19.
    Bouchoux G (2006). J Mass Spectrom 41:1006CrossRefGoogle Scholar
  20. 20.
    Aguado A, Lo’pez JM (2000). J Phys Chem B 104:8398CrossRefGoogle Scholar
  21. 21.
    Boutou V, Lebeault MA, Allouche AR, Bordas C, Paulig F, Viallon J, Chevaleyre J (1998). Phys Rev Lett 80:2817CrossRefGoogle Scholar
  22. 22.
    Saunders WA (1988). Phys Rev B 37:6583CrossRefGoogle Scholar
  23. 23.
    Martin TP, Bergmann T (1989). J Chem Phys 90:90 6664Google Scholar
  24. 24.
    Xie S, Rosynek MP, Lunsford JH (1999). J Catal 188:32CrossRefGoogle Scholar
  25. 25.
    Guzman J, Gates BC, Bruce C (2004). J Catal 226:11CrossRefGoogle Scholar
  26. 26.
    Hehre WJ, Ramdom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  27. 27.
    Chandra AK, Goursot A (1996). J Phys Chem 100:11599CrossRefGoogle Scholar
  28. 28.
    Remko M, Liedl KR, Rode BM (1996). J Chem Soc Perkin Trans 2:1743CrossRefGoogle Scholar
  29. 29.
    Ghanty TK, Ghosh SK (1997). J Phys Chem A 101:5022CrossRefGoogle Scholar
  30. 30.
    Remko M, Liedl KR, Rode BM (1997). J Mol Struct (THEOCHEM) 418:179CrossRefGoogle Scholar
  31. 31.
    Remko M, Rode BM (1999). J Phys Chem A 103:431CrossRefGoogle Scholar
  32. 32.
    Rao JS, Sastry GN (2006). Int J Quantum Chem 106:1217CrossRefGoogle Scholar
  33. 33.
    Luna A, Mo O, Yanez M, Gal J-F, Maria PC, Guillemin J-C (2006). Chem Eur J 12:9254CrossRefGoogle Scholar
  34. 34.
    Safi ZS, Frenking G (2013). Int J Quantum Chem 113:908CrossRefGoogle Scholar
  35. 35.
    Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  36. 36.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Head-Gordon M, Pople JA (1990). Chem Phys Lett 166:275CrossRefGoogle Scholar
  38. 38.
    Hohenberg P, Kohn W (1964). Phys Rev B 136:864CrossRefGoogle Scholar
  39. 39.
    Kohn W, Sham LJ (1965). Phys Rev 140:1133CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene R, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., WallingfordGoogle Scholar
  41. 41.
    Becke AD (1988). Phys Rev A 38:3098CrossRefGoogle Scholar
  42. 42.
    Reed AE, Weinstock RB, Weinhold F (1985). J Phys Chem 83:735CrossRefGoogle Scholar
  43. 43.
    Cances M, Mennucci B, Tomasi J (1997). J Chem Phys 107:3032CrossRefGoogle Scholar
  44. 44.
    Mennucci B, Tomasi J (1997). J Chem Phys 106:5151CrossRefGoogle Scholar
  45. 45.
    Cossi M, Scalmani G, Rega N, Barone V (2002). J Chem Phys 117:43CrossRefGoogle Scholar
  46. 46.
    Zobeydi R, Rahman Setayesh S (2018). Chem Phys 504:31CrossRefGoogle Scholar
  47. 47.
    Arnett M (1984). J Am Chem Soc 106:6759CrossRefGoogle Scholar
  48. 48.
    Raczy’nska ED, Makowski M, Górnicka E, Darowska M (2005). Int J Mol Sci 6:143CrossRefGoogle Scholar
  49. 49.
    Richard JP (1998). Biochemistry. 37:4305CrossRefGoogle Scholar
  50. 50.
    Kirby A (1997). Acc Chem Res 30:290CrossRefGoogle Scholar
  51. 51.
    Mejías JA, Lago S (2000). J Chem Phys 113:7306CrossRefGoogle Scholar
  52. 52.
    Tissandier MD et al (1998). J Phys Chem A 102:7787CrossRefGoogle Scholar
  53. 53.
    Markovic Z, Tošovic J, Milenkovic D, Markovic S (2016). Comput Theor Chem 1077:11CrossRefGoogle Scholar
  54. 54.
    Camaioni DM, Schwerdtfeger CA (2005). J Phys Chem A 109:10795CrossRefGoogle Scholar
  55. 55.
    Shokri A, Abedin A, Fattahi A, Kass SR (2012). J Am Chem Soc 134:10646CrossRefGoogle Scholar
  56. 56.
    Moser A, Range K, York DM (2010). J Phys Chem B 114:13911CrossRefGoogle Scholar
  57. 57.
    Kouzu M, Hidaka J-s (2012). Fuel. 93:1CrossRefGoogle Scholar
  58. 58.
    Chambers C, Holliday AK (1975) Butterworth & Co; 84Google Scholar
  59. 59.
    Bartmess JE (2011) In: Mallard WG, Linstrom PJ (eds) NIST chemistry Webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg, p 20899 ( Scholar
  60. 60.
    Correa JV, Jaque P, Olah J, Toro-Labbe A, Geerlings P (2009). Chem Phys Lett 470:180CrossRefGoogle Scholar
  61. 61.
    Ebrahimi A, Habibi-Khorasani SM, Jahantab M (2011). Comput Theor Chem 966:31CrossRefGoogle Scholar
  62. 62.
    Hilal R, Abdel Khalek AA, Elroby SAK (2005). Int J Quantum Chem 103:332CrossRefGoogle Scholar
  63. 63.
    Klein E, Rimarcik J, Lukes V (2009). Acta Chim Slov 2:37Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySharif University of TechnologyTehranIran

Personalised recommendations