Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1853–1857 | Cite as

Influence of non-metallic atoms on the absorption of amphetamines on B12N12 nano-cages

  • Mozhgan SabzehzariEmail author
  • Marzieh Ajamgard
  • Hamid Reza Shamlouei
Original Research
  • 25 Downloads

Abstract

Density functional theory (DFT) calculations at B3LYP/6-31+G(d) level were employed to investigate the influence of the non-metal encapsulation of the second row of the periodic table of elements on the optoelectronic response properties. Besides, the adsorption of amphetamine (AMP) on the surface of B12N12 nano-cage quantum theory of atoms in molecules (QTAIM) was employed to analyze the topology of electron density and bonding properties of the studied systems. It is demonstrated that the energy gap of the encapsulated nano-cages reduces significantly as compared to pristine B12N12 leading to an increase in the electrical conductance of the nano-cage. Aside from that, encapsulation drastically enhances the interaction of AMP with B12N12 nano-cage. Among non-metals of the second row of the periodic table, fluorine has the highest influence on the adsorption energy of the AMP and also on the surface of B12N12 nano-cage. However, carbon in triplet-state encapsulation greatly enhances the sensitivity of the B12N12 nano-cage to AMP. Finally, QTAIM results indicated that encapsulation increases the covalent character of N–B bonding.

Keywords

Adsorption Encapsulation Amphetamine Boron nitride nano-cages DFT AIM 

Notes

Acknowledgments

The authors are thankful to the Lorestan University for the support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1316_MOESM1_ESM.docx (176 kb)
ESM 1 (DOCX 176 kb)

References

  1. 1.
    Soltani A, VarastehMoradi A, Bahari M, Masoodi A, Shojaee S (2013). Physica B 430:20–26CrossRefGoogle Scholar
  2. 2.
    Choi H, Park YC, Kim Y-H, Lee YS (2011). J Am Chem Soc 133:2084–2087CrossRefGoogle Scholar
  3. 3.
    Zhukovskii YF, Piskunov S, Kazerovskis J, Makaev DV, D’yachkov PN (2013). J Phys Chem C 117:14235–14240CrossRefGoogle Scholar
  4. 4.
    Stephan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T et al (1998). Appl Phys A-Mater Sci Process 67:107–111.  https://doi.org/10.1007/s003390050 CrossRefGoogle Scholar
  5. 5.
    Oku T, Nishiwaki A, Narita I (2004). Sci Technol Adv Mater 5:635–638.  https://doi.org/10.1016/j.stam.2004.03.017 CrossRefGoogle Scholar
  6. 6.
    Oku T, Narita I, Nishiwaki A (2004). Mater Manuf Process 19:1215–1239CrossRefGoogle Scholar
  7. 7.
    Xu S, Zhang M, Zhao Y, Chen B, Zhang J, Sun CC (2006). Chem Phys Lett 423:212–214CrossRefGoogle Scholar
  8. 8.
    Oku T, Nishiwaki A, Narita I, Gonda M (2003). Chem Phys Lett 380:620CrossRefGoogle Scholar
  9. 9.
    Golberg D, Rode A, Bando Y, Mitome M, Gamaly E, Luther-Davies B (2003). Diamond Relat Mater 12:1269CrossRefGoogle Scholar
  10. 10.
    Rasmussen LB, Olsen KH, Johansen SS (2006). J Chromatogr B Anal Technol Biomed Life Sci 842:136–141CrossRefGoogle Scholar
  11. 11.
    Sulzer D, Sonders MS, Poulsen NW, Galli A (2005). Prog Neurobiol 75:406–433CrossRefGoogle Scholar
  12. 12.
    Barger G, Dale HH (1910). J Physiol 41:19–59CrossRefGoogle Scholar
  13. 13.
    Meyer E, Van Bocxlaer JF, Dirinck IM, Lambert WE, Thienpont L, De Leenheer AP (1997) Belg. J. of. Anal Toxicol 21:236–239CrossRefGoogle Scholar
  14. 14.
    Dirinck I, Meyer E, Van Bocxlaer J, Lambert W, DeLeenheer A (1998). J Chromatogr 819:155–159.  https://doi.org/10.1016/S0021-9673(98)00524-X CrossRefGoogle Scholar
  15. 15.
    Maurer HH, Kraemer T, Springer D, Staack RF (2004). Ther Drug Monit 26:127–131CrossRefGoogle Scholar
  16. 16.
    Kraemer T, Maurer HH (1998). J Chromatogr 713:163–187.  https://doi.org/10.1016/S0378-4347(97)00515-X CrossRefGoogle Scholar
  17. 17.
    Peters FT, Kraemer T, Maurer HH (2002). Clin Chem 48:1472–1485Google Scholar
  18. 18.
    Beheshtian J, Kamfiroozi M, Bagheri Z, Ahmadi Peyghan A (2012). Chin J Chem Phys 25:60–64CrossRefGoogle Scholar
  19. 19.
    Hegedüs H, Gergely A, Veress T, Zsila F (1999). Fresenius J Anal Chem 364:749–752CrossRefGoogle Scholar
  20. 20.
    Berg RW, Shim I, White PC, Abdali S (2012). Am J Anal Chem 3:410–421CrossRefGoogle Scholar
  21. 21.
    Glaser KP, Kaszynska J, Rachocki A, Tritt-Goc J, Pis’lewskia N, Pietraszko A (2009). New J Chem 33:1894–1900CrossRefGoogle Scholar
  22. 22.
    Olejniczak I, Pogorzelec-Glaser K (2012). J Phys Chem A 116:9854–9862CrossRefGoogle Scholar
  23. 23.
    Fresqui MAC, Ferreira MMC, Trsic M (2013). Anal Chim Acta 759:43–52CrossRefGoogle Scholar
  24. 24.
    Bahrami A, Seidi S, Baheri T, Aghamohammadi M (2013). Superlattice Microst 64:265–273CrossRefGoogle Scholar
  25. 25.
    Brause R, Fricke H, Gerhards M, Weinkauf R, Kleinermanns K (2006). Chem Phys 327:43–53CrossRefGoogle Scholar
  26. 26.
    Yao J, Im HS, Foltin M, Bernstein ER (2000). J Phys Chem A 104:6197–6211.  https://doi.org/10.1021/jp000383n CrossRefGoogle Scholar
  27. 27.
    Hafizi H, NajafiChermahini A, Mohammadnezhad GH, Teimouri A (2015). J. Appl Surf Sci 329:87–93CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) GAUSSIAN 09. Gaussian, Inc., Wallingford CTGoogle Scholar
  29. 29.
    Solimannejad M, Kamalinahad S, Shakerzadeh E (2016). J Phys Chem Res 4:315–332.  https://doi.org/10.22036/pcr.2016.14142 Google Scholar
  30. 30.
    Boys SF, Bernardi F (1970). Mol Phys 19:553–566CrossRefGoogle Scholar
  31. 31.
    O’Boyle NM, Tenderholt A, Langner K (2008). J Comp Chem 29:839–845.  https://doi.org/10.1002/jcc.20823 CrossRefGoogle Scholar
  32. 32.
    Dennington R, Keith T, Milam J (2009) Gauss View, Version 5. Semichem Inc., Shawnee MissionGoogle Scholar
  33. 33.
    Baei MT, Soltani A, Torabi P, Hashemian S (2015). J Monatsh Chem 146:891–896CrossRefGoogle Scholar
  34. 34.
    Bader RFW (2002) AIM2000 Program Package, Version 2.0. McMaster University, Hamilton. http://www.aim2000.de/ Google Scholar
  35. 35.
    Biegler-Konig F, Schonbohm J, Bayles D (2001). J Comp Chem 22:545–559CrossRefGoogle Scholar
  36. 36.
    Aliakbar Tehrani Z, Fattahi AR, JebeliJavan M, MahmoodiHashemi M (2011). J. Theoretical and Computational Chemistry 10:803–817.  https://doi.org/10.1142/S0219633611006797 CrossRefGoogle Scholar
  37. 37.
    Gil DM, Tuttolomondo ME, Ben Altabef A (2015). Spectrochim Acta A Mol Biomol Spectrosc 149:408–418CrossRefGoogle Scholar
  38. 38.
    Pakiari AH, Eskandari K (2006). J Mol Struct THEOCHEM 759:51–60CrossRefGoogle Scholar
  39. 39.
    Yuan Q, Zhao Y-P, Li L, Wang T (2009). J Phys Chem C 113:6107–6113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of Basic ScienceJundi-Shapur University of TechnologyDezfulIran
  2. 2.Molecular Simulation Laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Physical Chemistry Group, Chemistry DepartmentLorestan UniversityKhorram AbadIran

Personalised recommendations