Structural Chemistry

, Volume 30, Issue 5, pp 1819–1830 | Cite as

New insights into the dihydrogen bonds (MHδ−···Hδ+X) in CpM(PMe3)(L)2H···HX (M=Cr, Mo, W; L=PMe3, CO; X=F, OH, NH2)

  • Yaru Dang
  • Na Zhang
  • Zheng SunEmail author
  • Qingzhong Li
  • Xiaoyan LiEmail author
Original Research


Dihydrogen bonds (DHBs) play a fundamental role in catalytic processes, organometallic reaction mechanisms, and potential hydrogen storage materials. In this work, we analyzed the interactions of transition metal (TM) hydrides CpM(PMe3)(L)2H (M=Cr, Mo, W; L=PMe3, CO) with poor, moderate, and strong proton donors HX (NH3, H2O, and HF), and focus on the DHBs in these complexes. All important factors that can affect the DHBs have been considered: transition metal, proton donor, and substituent group. Electrostatic potential (ESP) analysis, topological (atoms in molecules) analysis and noncovalent interactions index (NCI) analysis of the electron density, energy decomposition analysis (EDA) and the effect of electric field were applied to better understand the nature of the DHBs (MHδ−···Hδ+X) in CpM(PMe3)(L)2H···HX (M=Cr, Mo, W; L=PMe3, CO; X=F, OH, NH2). The calculated results showed that both the MHδ−···Hδ+X bonds and M···Hδ+X bonds can form in CpM(PMe3)(L)2H···HX complexes. Electron-rich 5d metal (W in this case) hydrides have a greater chance of forming M···Hδ+X bonds rather than MHδ−···Hδ+X bonds. Cr is more likely to form DHBs than Mo and W. This is a very inspiring finding because this may indicate that the first-row transition metal, which shows low cost, low toxicity, and exceptional synthetic versatility, is more suitable for catalytic hydrogenation. The type of proton donor and the substituting of PMe3 by CO can alter the strength of DHBs. The stronger proton donor involves the stronger DHBs form. The substitution of CO decreases the strength of the dihydrogen bond. Both the electrostatic interaction and the orbital interaction play important roles in DHBs, R (Hδ−···Hδ+) = 1.6 Å seems to be the boundary between these two kinds of interactions. The addition of electric field is conducive to H2 formation for strong DHB complexes, while it has no effect on the weak DHB complexes.


Dihydrogen bonds Transition metal hydride Topological analysis of electron density EDA 


Funding information

This work was supported by the Education Department Foundation of Hebei Province (Contract No. ZD2018066) and Natural Science Fundation of Hebei Province(B2016205042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kubas GJ, Ryan RR, Swanson BI et al (1984) Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2)(M= molybdenum or tungsten; R= Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 106(2):451–452Google Scholar
  2. 2.
    Kubas GJ (1988) Molecular hydrogen complexes: coordination of a sigma bond to transition metals. Acc Chem Res 21(3):120–128Google Scholar
  3. 3.
    Kubas GJ, Unkefer CJ, Swanson BI et al (1986) Molecular hydrogen complexes of the transition metals. 4. Preparation and characterization of M(CO)3(PR3)22-H2)(M= molybdenum, tungsten) and evidence for equilibrium dissociation of the HH bond to give MH2(CO)3(PR3)2. J Am Chem Soc 108(22):7000–7009Google Scholar
  4. 4.
    Van Der Sluys LS, Eckert J, Eisenstein O et al (1990) An attractive cis-effect of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)22-H2)(PEtPh2)3. J Am Chem Soc 112(12):4831–4841Google Scholar
  5. 5.
    Wasserman HJ, Kubas GJ, Ryan RR (1986) Molecular hydrogen complexes of the transition metals. Preparation, structure, and reactivity of W(CO)3(PCy3)2 and W(CO)3(P-iso-Pr3)2, η2-H2 complex precursors exhibiting metal hydrogen-carbon interaction. J Am Chem Soc 108(9):2294–2301Google Scholar
  6. 6.
    Kubas GJ (1988) Molecular hydrogen coordination to transition metals. Comments Inorg Chem 7(1):17–40Google Scholar
  7. 7.
    Crabtree RH, Hamilton DG (1988) H-H, C-H, and related sigma-bonded groups as ligands. Adv Organomet Chem 28:299–338Google Scholar
  8. 8.
    Henderson RA (1988) Dihydrogen complexes of the transition metals. Transit Met Chem 13(6):474–480Google Scholar
  9. 9.
    Jessop PG, Morris RH (1992) Reactions of transition metal dihydrogen complexes. Coord Chem Rev 121:155–284Google Scholar
  10. 10.
    Szymczak NK, Tyler DR (2008) Aspects of dihydrogen coordination chemistry relevant to reactivity in aqueous solution. Coord Chem Rev 252(1–2):212–230Google Scholar
  11. 11.
    Wolstenholme DJ, Titah JT, Che FN et al (2011) Homopolar dihydrogen bonding in alkali-metal amidoboranes and its implications for hydrogen storage. J Am Chem Soc 133(41):16598–16604Google Scholar
  12. 12.
    Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107(10):4152–4205Google Scholar
  13. 13.
    Igarashi RY, Laryukhin M, Dos Santos PC et al (2005) Trapping H-bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. J Am Chem Soc 127(17):6231–6241Google Scholar
  14. 14.
    Lagaditis PO, Sues PE, Lough AJ et al (2015) Exploring the decomposition pathways of iron asymmetric transfer hydrogenation catalysts. Dalton Trans 44(27):12119–12127Google Scholar
  15. 15.
    Zuo W, Lough AJ, Li YF et al (2013) Amine (imine) diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342(6162):1080–1083Google Scholar
  16. 16.
    Ogo S, Ichikawa K, Kishima T et al (2013) A functional [NiFe] hydrogenase mimic that catalyzes electron and hydride transfer from H2. Science 339(6120):682–684Google Scholar
  17. 17.
    Esteruelas MA, Oro LA (1998) Dihydrogen complexes as homogeneous reduction catalysts. Chem Rev 98(2):577–588Google Scholar
  18. 18.
    Karasik AA, Balueva AS, Musina EI et al (2013) Chelating cyclic aminomethylphosphines and their transition metal complexes as a promising basis of bioinspired mimetic catalysts. Mendeleev Commun 23(5):237–248Google Scholar
  19. 19.
    Morris RH (2016) Brønsted–Lowry acid strength of metal hydride and dihydrogen complexes. Chem Rev 116(15):8588–8654Google Scholar
  20. 20.
    Crabtree R (2016) Dihydrogen complexation. Chem Rev 116(15):8750–8769Google Scholar
  21. 21.
    Belkova NV, Epstein LM, Filippov OA et al (2016) Hydrogen and dihydrogen bonds in the reactions of metal hydrides. Chem Rev 116(15):8545–8587Google Scholar
  22. 22.
    Grabowski SJ (2011) What is the covalency of hydrogen bonding. Chem Rev 111(4):2597–2625Google Scholar
  23. 23.
    Rozas I, Alkorta I, Elguero J (1997) Field effects on dihydrogen bonded systems. Chem Phys Lett 275(3–4):423–428Google Scholar
  24. 24.
    Liu Q, Hoffmann R (1995) Theoretical aspects of a novel mode of hydrogen-hydrogen bonding. J Am Chem Soc 117(40):10108–10112Google Scholar
  25. 25.
    Lough AJ, Park S, Ramachandran R et al (1994) Switching on and off a new intramolecular hydrogen-hydrogen interaction and the heterolytic splitting of dihydrogen. Crystal and molecular structure of [Ir{H(η1-SC5H4NH)}2(PCy3)2]BF4CH2Cl2[J]. J Am Chem Soc 116(18):8356–8357Google Scholar
  26. 26.
    Solimannejad M, Scheiner S (2005) Theoretical investigation of the dihydrogen bond linking MH2 with HCCRgF (M= Zn, Cd; Rg= Ar, Kr). J Phys Chem A 109(51):11933–11935Google Scholar
  27. 27.
    Grabowski SJ (2013) Non-covalent interactions–QTAIM and NBO analysis. J Mol Model 19(11):4713–4721Google Scholar
  28. 28.
    Filippov OA, Golub IE, Osipova ES et al (2014) Activation of M-H bond upon the complexation of transition metal hydrides with acids and bases. Russ Chem Bull 63(11):2428–2433Google Scholar
  29. 29.
    Alkorta I, Elguero J, Grabowski SJ (2008) How to determine whether intramolecular H⋯H interactions can be classified as dihydrogen bonds. J Phys Chem A 112(12):2721–2727Google Scholar
  30. 30.
    Filippov OA, Belkova NV, Epstein LM et al (2012) Directionality of dihydrogen bonds: the role of transition metal atoms. ChemPhysChem 13(11):2677–2687Google Scholar
  31. 31.
    Papish ET, Rix FC, Spetseris N et al (2000) Protonation of CpW(CO)2(PMe3)H: is the metal or the hydride the kinetic site. J Am Chem Soc 122(49):12235–12242Google Scholar
  32. 32.
    Bullock RM, Song JS, Szalda DJ (1996) Protonation of metal hydrides by strong acids. Formation of an equilibrium mixture of dihydride and dihydrogen complexes from protonation of Cp*Os (CO)2H. Structural characterization of [CpW(CO)2(PMe3)(H)2]+OTf. Organometallics 15(10):2504–2516Google Scholar
  33. 33.
    Baya M, Dub PA, Houghton J et al (2008) Investigation of the [Cp*Mo(PMe3)3H]n+(n=0,1) redox pair: dynamic processes on very different time scales. Inorg Chem 48(1):209–220Google Scholar
  34. 34.
    Dub PA, Filippov OA, Belkova NV et al (2010) Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO) H and its role in proton transfer. Dalton Trans 39(8):2008–2015Google Scholar
  35. 35.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241Google Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  37. 37.
    Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023Google Scholar
  38. 38.
    Peterson KA (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J Chem Phys 119(21):11099–11112Google Scholar
  39. 39.
    Bader RFW, Carroll MT, Cheeseman JR et al (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109(26):7968–7979Google Scholar
  40. 40.
    Murray JS, Politzer P (2009) Molecular surfaces, van der Waals radii and electrostatic potentials in relation to noncovalent interactions. Croat Chem Acta 82(1):267–275Google Scholar
  41. 41.
    Bulat FA, Toro-Labbé A, Brinck T et al (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691Google Scholar
  42. 42.
    Popelier P (2000) Atoms in molecules—an introduction. UMIST, ManchesterGoogle Scholar
  43. 43.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  44. 44.
    Keith TA (2012) AIMALL, 13.02.26. Available at:
  45. 45.
    Johnson ER, Keinan S, Mori-Sanchez P et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506Google Scholar
  46. 46.
    Contreras-García J, Johnson ER, Keinan S et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632Google Scholar
  47. 47.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592Google Scholar
  48. 48.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38Google Scholar
  49. 49.
    ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available from:
  50. 50.
    Politzer P, Murray JS (2009) The electrostatic potential as a guide to molecular interactive behavior. Chemical Reactivity Theory: A Density Functional View 17: 243–254Google Scholar
  51. 51.
    Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Accounts 108(3):134–142Google Scholar
  52. 52.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153–163Google Scholar
  53. 53.
    Peralta-Inga Z, Lane P, Murray JS et al (2003) Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and boron/nitrogen model nanotubes. Nano Lett 3(1):21–28Google Scholar
  54. 54.
    Hagelin H, Murray JS, Politzer P et al (1995) Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts. Can J Chem 73(4):483–488Google Scholar
  55. 55.
    Kar T, Scheiner S (2003) Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. J Chem Phys 119(3):1473–1482Google Scholar
  56. 56.
    Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10(2):325–340Google Scholar
  57. 57.
    Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10(8):294–300Google Scholar
  58. 58.
    Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide asσ-donors and π-acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg Chem 18(7):1755–1759Google Scholar
  59. 59.
    Phipps MJS, Fox T, Tautermann CS et al (2015) Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem Soc Rev 44(10):3177–3211Google Scholar
  60. 60.
    Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103(2):304–314Google Scholar
  61. 61.
    Kar T, Ángyán JG, Sannigrahi AB (2000) Comparison of ab initio Hartree−Fock and Kohn−Sham orbitals in the calculation of atomic charge, bond index, and valence. J Phys Chem A 104(44):9953–9963Google Scholar
  62. 62.
    Firme CL, Antunes OAC, Esteves PM (2009) Relation between bond order and delocalization index of QTAIM. Chem Phys Lett 468(4–6):129–133Google Scholar
  63. 63.
    Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161Google Scholar
  64. 64.
    Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2(CO)10: metal−metal and metal−ligand bond characterization. Inorg Chem 39(11):2360–2366Google Scholar
  65. 65.
    Cramer D, Kraka E (1984) Chemical bonds without bonding electron density. Angew Chem Int Ed Engl 23:627–628Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.National Demonstratin Center for Experimental ChemistryHebei Normal UniversityShijiazhuangChina
  3. 3.The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople’s Republic of China

Personalised recommendations