Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1737–1748 | Cite as

DFT investigation on some nitrogen-doped fullerenes with more antiradical and antioxidant activities than C60

  • A-Reza NekoeiEmail author
  • Sanaz Haghgoo
Original Research

Abstract

Although fullerene C60 is a strong scavenger for alkyl radicals, it is insusceptible toward peroxyl radicals. Substitution of carbon atoms in the fullerene cage by heteroatoms could change its electronic properties and improve its antiradical and antioxidant activities. In this study, antiradical and antioxidant activities of C40N20 and C42N18 azafullerenes have been investigated, in comparison with those of the C60, by using DFT methods. Adsorptions of several alkyl and peroxyl radicals on the most active sites of different separated-nitrogen (SN) and nitrogen-belt (NB) isomers of these azafullerenes have been studied by analyzing several parameters and by comparison with the corresponding values of the C60. The results show that both studied isomers of the target azafullerenes exhibit stronger antiradical activities than the C60. It is also concluded that the antiradical activities of NB-isomers are greater than SN-isomers, while SN-isomers have more antioxidant activities than NB-isomers and several times more than fullerene C60.

Keywords

Azafullerene Free radical Radical adsorption Active site Complexation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1311_MOESM1_ESM.pdf (341 kb)
ESM 1 (PDF 341 kb)

References

  1. 1.
    Brink C, Andersen LH, Hvelplund P, Mathur D, Voldstad JD (1995). Chem Phys Lett 233:52–56CrossRefGoogle Scholar
  2. 2.
    Krusic PJ, Wasserman E, Parkinson BA, Malone B, Holler Jr ER, Keizer PN, Morton JR, Preston KF (1991). Science 254:1183–1185CrossRefGoogle Scholar
  3. 3.
    McEwen CN, McKay RG, Larsen BS (1992). J Am Chem Soc 114:4412–4414CrossRefGoogle Scholar
  4. 4.
    Morton JR, Negri F, Preston KF (1995). Magn Reson Chem 33:S20–S27CrossRefGoogle Scholar
  5. 5.
    Fagan PJ, Krusic PJ, McEwen CN, Lazar J, Parkert DH, Herron N, Wasserman E (1993). Science 262:404–407CrossRefGoogle Scholar
  6. 6.
    Tumanskii BL, Shaposhinikova EN, Bashilov VV, Solodovnikov SP, Bubnov NN, Sterlin SR (1997). Russ Chem Bull 46:1174–1176CrossRefGoogle Scholar
  7. 7.
    Gasanov RG, Kalina OG, Bashilov VV, Tumanskii BL (1999). Russ Chem Bull 48:2344–2346CrossRefGoogle Scholar
  8. 8.
    Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR (2007). Chem Eur J 13:2530–2545CrossRefGoogle Scholar
  9. 9.
    Jensen AW, Wilson SR, Schuster DI (1996). Bioorg Med Chem 4:767–779CrossRefGoogle Scholar
  10. 10.
    Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007). Int J Nanomedicine 2:639–649Google Scholar
  11. 11.
    Chen Z, Mao R, Liu Y (2012). Curr Drug Metab 13:1035–1045CrossRefGoogle Scholar
  12. 12.
    Wakai H, Shinno T, Yamauchi T, Tsubokawa N (2007). Polymer 48:1972–1980CrossRefGoogle Scholar
  13. 13.
    Riahi S, Pourhossein P, Zolfaghari A, Ganjali MR, Jooya HZ (2009). Fuller Nanotub Car N 17:159–170CrossRefGoogle Scholar
  14. 14.
    Warnatz J (1986). Ber Bunsenges Phys Chem 90:494–494CrossRefGoogle Scholar
  15. 15.
    Driscoll DJ, Martir W, Wang JX, Lunsford JH (1985). J Am Chem Soc 107:58–63CrossRefGoogle Scholar
  16. 16.
    Peng XD, Viswanathan R, Smudde Jr GH, Stair PC (1992). Rev Sci Instrum 63:3930–3935CrossRefGoogle Scholar
  17. 17.
    Galimov DI, Bulgakov RG, Gazeeva DR (2011). Russ Chem Bull 60:2107–2109CrossRefGoogle Scholar
  18. 18.
    Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G (2002). J Am Chem Soc 124:13384–13385CrossRefGoogle Scholar
  19. 19.
    Sabirov DS, Garipova RR, Bulgakov RG (2013). J Phys Chem A 117:13176–13183CrossRefGoogle Scholar
  20. 20.
    Wright JS, Shadnia H, Chepelev LL (2009). J Comput Chem 30:1016–1026CrossRefGoogle Scholar
  21. 21.
    Narayanan B, Zhao Y, Ciobanu CV (2012) Appl Phys Lett 100:203901–1–203901–4Google Scholar
  22. 22.
    Jiménez V, Ramírez-Lucas A, Sánchez P, Valverde JL, Romero A (2012). Int J Hydrog Energy 37:4144–4160CrossRefGoogle Scholar
  23. 23.
    Jiménez V, Ramírez-Lucas A, Sánchez P, Valverde JL, Romero A (2012). Appl Surf Sci 258:2498–2509CrossRefGoogle Scholar
  24. 24.
    Morton JR, Preston KF, Krusic PJ, Hill SA, Wasserman E (1992). J Phys Chem 96:3576–3578CrossRefGoogle Scholar
  25. 25.
    Gasanov RG, Tumanskii BL (2002). Russ Chem Bull 51:240–242CrossRefGoogle Scholar
  26. 26.
    Walbiner M, Fischer H (1993). J Phys Chem 97:4880–4881CrossRefGoogle Scholar
  27. 27.
    Tachikawa H, Iyama T (2015). Phys Status Solidi C 12:659–663CrossRefGoogle Scholar
  28. 28.
    Tachikawa H, Kawabata H (2015) Jpn J Appl Phys 55:02BB01–1-02BB01–5Google Scholar
  29. 29.
    Zeynalov EB, Allen NS, Salmanova NI (2009). Polym Degrad Stab 94:1183–1189CrossRefGoogle Scholar
  30. 30.
    Chi Y, Bhonsle JB, Canteenwala T, Huang JP, Shiea J, Chen BJ, Chiang LY (1998). Chem Lett 27:465–466CrossRefGoogle Scholar
  31. 31.
    Bulgakov RG, Ponomareva YG, Maslennikov SI, Nevyadovsky EY, Antipina SV (2005). Russ Chem Bull 54:1862–1865CrossRefGoogle Scholar
  32. 32.
    Enes RF, Tomé AC, Cavaleiro JA, Amorati R, Fumo MG, Pedulli GF, Valgimigli L (2006). Chem Eur J 12:4646–4653CrossRefGoogle Scholar
  33. 33.
    Xie RH, Bryant GW, Jensen L, Zhao J, Smith Jr VH (2003). J Chem Phys 118:8621–8635CrossRefGoogle Scholar
  34. 34.
    Manaa MR, Sprehn DW, Ichord HA (2003). Chem Phys Lett 374:405–409CrossRefGoogle Scholar
  35. 35.
    Manaa MR, Ichord HA, Sprehn DW (2003). Chem Phys Lett 378:449–455CrossRefGoogle Scholar
  36. 36.
    Sharma H, Garg I, Dharamvir K, Jindal VK (2009). J Phys Chem A 113:9002–9013CrossRefGoogle Scholar
  37. 37.
    Nekoei AR, Haghgoo S (2015). Comput Theor Chem 1067:148–157CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CTGoogle Scholar
  39. 39.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  40. 40.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789CrossRefGoogle Scholar
  41. 41.
    Van Duijneveldt FB, van Duijneveldt-van de Rijdt JG, van Lenthe JH (1994). Chem Rev 94:1873–1885CrossRefGoogle Scholar
  42. 42.
    Schwenke DW, Truhlar DG (1985). J Chem Phys 82:2418–2426CrossRefGoogle Scholar
  43. 43.
    Schettino V, Pagliai M, Ciabini L, Cardini G (2001). J Phys Chem A 105:11192–11196CrossRefGoogle Scholar
  44. 44.
    Zhang J, Fuhrer T, Fu W, Ge J, Bearden DW, Dallas J, Duchamp J, Walker K, Champion H, Azurmendi H, Harich K (2012). J Am Chem Soc 134:8487–8493CrossRefGoogle Scholar
  45. 45.
    Montoya A, Truong TN, Sarofim AF (2000). J Phys Chem A 104:6108–6110CrossRefGoogle Scholar
  46. 46.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WIGoogle Scholar
  47. 47.
    Wiberg KB (1968). Tetrahedron 24:1083–1096CrossRefGoogle Scholar
  48. 48.
    Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission KSGoogle Scholar
  49. 49.
    Gilardoni F, Weber J, Chermette H, Ward TR (1998). J Phys Chem A 102:3607–3613CrossRefGoogle Scholar
  50. 50.
    Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735–746CrossRefGoogle Scholar
  51. 51.
    Arulmozhiraja S, Kolandaivel P (1997). Mol Phys 90:55–62CrossRefGoogle Scholar
  52. 52.
    Tzirakis MD, Orfanopoulos M (2013). Chem Rev 113:5262–5321CrossRefGoogle Scholar
  53. 53.
    Morton JR, Negri F, Preston KF (1998). Acc Chem Res 31:63–69CrossRefGoogle Scholar
  54. 54.
    Tachikawa H, Iyama T, Abe S (2011). Phys Procedia 14:139–142CrossRefGoogle Scholar
  55. 55.
    Bulgakov RG, Galimov DI, Gazeeva DR (2013). Fuller Nanotub Car N 21:869–878CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryShiraz University of TechnologyShirazIran

Personalised recommendations