Advertisement

Structural Chemistry

, Volume 30, Issue 5, pp 1715–1727 | Cite as

Molecular alteration in drug susceptibility against subtype B and C-SA HIV-1 proteases: MD study

  • Amit Kumar Halder
  • Bahareh HonarparvarEmail author
Original Research
  • 51 Downloads

Abstract

HIV-1 protease (HIV PR) is one of the most promising targets for anti-HIV drug discovery. Extensive anti-HIV drug discovery research was focused on HIV-1 subtype B protease though FDA-approved protease inhibitors (PIs) generally exhibit altered biological activities against other protease subtypes such as South African subtype C (C-SA) protease that is prevalent in sub-Saharan Africa. Recent experimental reports highlight the differences in dynamic behaviors between these two protease subtypes. Herein, the dynamics of three FDA approved PIs, namely atazanavir (ATV), darunavir (DRV), and ritonavir (RTV), were thoroughly analyzed for both subtypes B and C protease complexes using molecular dynamic (MD) simulation in explicit solvent. The comparative MD post-analyses through flap dynamics, cross-correlation analyses, principal component analyses (PCA), per residue decomposition analyses, and MM-GBSA binding free energy analyses, revealed the altered responses observed in the complexes of these PIs in these two protease subtypes. The calculated theoretical binding energy analyses are consistent with the experiment to a considerable extent. Theoretical binding energies combined with flap dynamics appear to correspond to altered drug susceptibility against subtype B and C-SA HIV-1 proteases. The current analyses provide useful insight on the mechanism of action of PIs against these two different HIV-1 protease subtypes which will be helpful in developing new anti-protease compounds.

Keywords

HIV-1 protease (HIV PR) Protease inhibitors (PIs) Molecular dynamic (MD) simulation Flap dynamics Binding free energy 

Notes

Acknowledgements

We thank the CHPC (www.chpc.ac.za) for providing computational resources.

Funding information

This work was financially supported by the NRF, College of Health Sciences, at University of KwaZulu Natal (UKZN), and Aspen-Pharmacare.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1305_MOESM1_ESM.rar (577 kb)
ESM 1 (RAR 576 kb)
11224_2019_1305_MOESM2_ESM.docx (232 kb)
ESM 2 (DOCX 231 kb)

References

  1. 1.
    World Health Organization. Global Health Observatory (GHO) data. http://www.who.int/gho/hiv/en/. Accessed January 2017
  2. 2.
    Brik A, Wong CH (2003) HIV-1 protease: mechanism and drug discovery. Org Biomol Chem 1(1):5–14CrossRefGoogle Scholar
  3. 3.
    Naicker P, Stoychev S, Dirr HW, Sayed Y (2014) Amide hydrogen exchange in HIV-1 subtype B and C proteases--insights into reduced drug susceptibility and dimer stability. FEBS J 281(24):5395–5410.  https://doi.org/10.1111/febs.13084 CrossRefGoogle Scholar
  4. 4.
    Walker PR, Pybus OG, Rambaut A, Holmes EC (2005) Comparative population dynamics of HIV-1 subtypes B and C: subtype-specific differences in patterns of epidemic growth. Infect Genet Evol 5(3):199–208.  https://doi.org/10.1016/j.meegid.2004.06.011 CrossRefGoogle Scholar
  5. 5.
    Joint Nations Program on HIV/AIDS (UNAIDS) (2013) Global report: UNAIDS report on the global AIDS epidemic 2013. UNAIDS, GenevaGoogle Scholar
  6. 6.
    Mosebi S, Morris L, Dirr HW, Sayed Y (2008) Active-site mutations in the South African human immunodeficiency virus type 1 subtype C protease have a significant impact on clinical inhibitor binding: kinetic and thermodynamic study. J Virol 82(22):11476–11479.  https://doi.org/10.1128/JVI.00726-08 CrossRefGoogle Scholar
  7. 7.
    World Health Organisation (WHO) (2013) The use of antiretroviral drugs for treating and preventing HIV infection. WHO Press, GenevaGoogle Scholar
  8. 8.
    Maseko SB, Natarajan S, Sharma V, Bhattacharyya N, Govender T, Sayed Y, Maguire GE, Lin J, Kruger HG (2016) Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies. Protein Expr Purif 122:90–96.  https://doi.org/10.1016/j.pep.2016.02.013 CrossRefGoogle Scholar
  9. 9.
    Velazquez-Campoy A, Vega S, Fleming E, Bacha U, Sayed Y, Dirr HW, Freire E (2003) Protease inhibition in African subtypes of HIV-1. AIDS Rev 5(3):165–171Google Scholar
  10. 10.
    Lockhat HA, Silva JR, Alves CN, Govender T, Lameira J, Maguire GE, Sayed Y, Kruger HG (2016) Binding free energy calculations of nine FDA-approved protease inhibitors against HIV-1 subtype C I36T upward arrowT containing 100 amino acids per monomer. Chem Biol Drug Des 87(4):487–498.  https://doi.org/10.1111/cbdd.12690 CrossRefGoogle Scholar
  11. 11.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data Bank. Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  12. 12.
    King NM, Prabu-Jeyabalan M, Bandaranayake RM, Nalam MN, Nalivaika EA, Ozen A, Haliloglu T, Yilmaz NK, Schiffer CA (2012) Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease. ACS Chem Biol 7(9):1536–1546.  https://doi.org/10.1021/cb300191k CrossRefGoogle Scholar
  13. 13.
    Mittal S, Cai Y, Nalam MN, Bolon DN, Schiffer CA (2012) Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease. J Am Chem Soc 134(9):4163–4168.  https://doi.org/10.1021/ja2095766 CrossRefGoogle Scholar
  14. 14.
    Kempf DJ, Marsh KC, Denissen JF, McDonald E, Vasavanonda S, Flentge CA, Green BE, Fino L, Park CH, Kong XP et al (1995) ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci U S A 92(7):2484–2488CrossRefGoogle Scholar
  15. 15.
    Ahmed SM, Kruger HG, Govender T, Maguire GE, Sayed Y, Ibrahim MA, Naicker P, Soliman ME (2013) Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR. Chem Biol Drug Des 81(2):208–218.  https://doi.org/10.1111/cbdd.12063 CrossRefGoogle Scholar
  16. 16.
    Maphumulo SI, Halder AK, Govender T, Maseko S, Maguire GEM, Honarparvar B, Kruger HG (2018) Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study. Chem Biol Drug Des.  https://doi.org/10.1111/cbdd.13364
  17. 17.
    Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73(3):765–783.  https://doi.org/10.1002/prot.22102 CrossRefGoogle Scholar
  18. 18.
    Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61(4):704–721.  https://doi.org/10.1002/prot.20660 CrossRefGoogle Scholar
  19. 19.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins-Struct Funct Bioinf 65:712–725CrossRefGoogle Scholar
  20. 20.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  21. 21.
    Case VB DA, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San FranciscoGoogle Scholar
  22. 22.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935.  https://doi.org/10.1063/1.445869 CrossRefGoogle Scholar
  23. 23.
    Harvey MJFGD (2009) An implementation of the smooth particle mesh Ewald method on GPU hardware. J Chem Theory Comput 5(9):2371–2377CrossRefGoogle Scholar
  24. 24.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of N-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  25. 25.
    Roe DRCTE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095CrossRefGoogle Scholar
  26. 26.
    Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate−DNA helices. J Am Chem Soc 120:9401–9409CrossRefGoogle Scholar
  27. 27.
    Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913CrossRefGoogle Scholar
  28. 28.
    Gohlke H, Case DA (2003) Converging free energy estimates: MMPB(GB)SA studies on the protein−protein complex Ras−Raf. J Comput Chem 25:238–−250CrossRefGoogle Scholar
  29. 29.
    Genheden S, Ryde U (2012) Will molecular dynamics simulations of proteins ever reach equilibrium? Phys Chem Chem Phys 14:8662–8677CrossRefGoogle Scholar
  30. 30.
    Kopitz H, Cashman DA, Pfeiffer-Marek S, Gohlke H (2012) Influence of the solvent representation on vibrational entropy calculations: generalized born versus distance-dependent dielectric model. J Comput Chem 33:1004–−1013CrossRefGoogle Scholar
  31. 31.
    Xu B, Shen H, Zhu X, Li G (2011) Fast and accurate computation schemes for evaluating vibrational entropy of proteins. J Comput Chem 32:3188–3193CrossRefGoogle Scholar
  32. 32.
    Hou TZW, Case DA, Wang W (2008) Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. J Mol Biol 376:1201–1214CrossRefGoogle Scholar
  33. 33.
    Gohlke HKC, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaIGDS complexes. J Mol Biol 330:891–913CrossRefGoogle Scholar
  34. 34.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38 27-38 CrossRefGoogle Scholar
  35. 35.
    Huang X, Britto MD, Kear-Scott JL, Boone CD, Rocca JR, Simmerling C, McKenna R, Bieri M, Gooley PR, Dunn BM, Fanucci GE (2014) The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics. J Biol Chem 289(24):17203–17214.  https://doi.org/10.1074/jbc.M114.571836 CrossRefGoogle Scholar
  36. 36.
    Mahanti M, Bhakat S, Nilsson UJ, Soderhjelm P (2016) Flap dynamics in aspartic proteases: a computational perspective. Chem Biol Drug Des 88(2):159–177.  https://doi.org/10.1111/cbdd.12745 CrossRefGoogle Scholar
  37. 37.
    Hornak V, Okur A, Rizzo RC, Simmerling C (2006) HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc Natl Acad Sci U S A 103(4):915–920.  https://doi.org/10.1073/pnas.0508452103 CrossRefGoogle Scholar
  38. 38.
    Roe DR, Cheatham 3rd TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095.  https://doi.org/10.1021/ct400341p CrossRefGoogle Scholar
  39. 39.
    Chen J (2016) Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions. RSC Adv 6(63):58573–58585.  https://doi.org/10.1039/C6RA09201B CrossRefGoogle Scholar
  40. 40.
    Foulkes-Murzycki JE, Scott WR, Schiffer CA (2007) Hydrophobic sliding: a possible mechanism for drug resistance in human immunodeficiency virus type 1 protease. Structure 15(2):225–233.  https://doi.org/10.1016/j.str.2007.01.006 CrossRefGoogle Scholar
  41. 41.
    Huang X, de Vera IM, Veloro AM, Blackburn ME, Kear JL, Carter JD, Rocca JR, Simmerling C, Dunn BM, Fanucci GE (2012) Inhibitor-induced conformational shifts and ligand-exchange dynamics for HIV-1 protease measured by pulsed EPR and NMR spectroscopy. J Phys Chem B 116(49):14235–14244.  https://doi.org/10.1021/jp308207h CrossRefGoogle Scholar
  42. 42.
    Meher BR, Wang Y (2012) Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies. J Phys Chem B 116(6):1884–1900.  https://doi.org/10.1021/jp2074804 CrossRefGoogle Scholar
  43. 43.
    Perryman AL, Lin JH, McCammon JA (2004) HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci 13(4):1108–1123.  https://doi.org/10.1110/ps.03468904 CrossRefGoogle Scholar
  44. 44.
    Chen J, Liang Z, Wang W, Yi C, Zhang S, Zhang Q (2014) Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations. Sci Rep 4:6872.  https://doi.org/10.1038/srep06872 CrossRefGoogle Scholar
  45. 45.
    Scott WR, Schiffer CA (2000) Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Structure 8(12):1259–1265CrossRefGoogle Scholar
  46. 46.
    Freedberg DI, Ishima R, Jacob J, Wang YX, Kustanovich I, Louis JM, Torchia DA (2002) Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci 11(2):221–232.  https://doi.org/10.1110/ps.33202 CrossRefGoogle Scholar
  47. 47.
    Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2000) How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J Mol Biol 301(5):1207–1220.  https://doi.org/10.1006/jmbi.2000.4018 CrossRefGoogle Scholar
  48. 48.
    Fakhar Z, Govender T, Maguire GEM, Lamichhane G, Walker RC, Kruger HG, Honarparvar B (2017) Differential flap dynamics in l,d-transpeptidase2 from mycobacterium tuberculosis revealed by molecular dynamics. Mol BioSyst 13(6):1223–1234.  https://doi.org/10.1039/c7mb00110j CrossRefGoogle Scholar
  49. 49.
    Muzammil S, Armstrong AA, Kang LW, Jakalian A, Bonneau PR, Schmelmer V, Amzel LM, Freire E (2007) Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations. J Virol 81(10):5144–5154.  https://doi.org/10.1128/JVI.02706-06 CrossRefGoogle Scholar
  50. 50.
    Kurt Yilmaz N, Swanstrom R, Schiffer CA (2016) Improving viral protease inhibitors to counter drug resistance. Trends Microbiol 24(7):547–557.  https://doi.org/10.1016/j.tim.2016.03.010 CrossRefGoogle Scholar
  51. 51.
    Sayer JM, Louis JM (2009) Interactions of different inhibitors with active-site aspartyl residues of HIV-1 protease and possible relevance to pepsin. Proteins 75(3):556–568.  https://doi.org/10.1002/prot.22271 CrossRefGoogle Scholar
  52. 52.
    Lv Z, Chu Y, Wang Y (2015) HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 7:95–104.  https://doi.org/10.2147/HIV.S79956 Google Scholar
  53. 53.
    Maseko SB, Padayachee E, Govender T, Sayed Y, Kruger G, Maguire GEM, Lin J (2017) I36T upward arrowT mutation in South African subtype C (C-SA) HIV-1 protease significantly alters protease-drug interactions. Biol Chem.  https://doi.org/10.1515/hsz-2017-0107

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations