Structural Chemistry

, Volume 30, Issue 5, pp 1707–1714 | Cite as

Studies on predicting reactive sites of 3,9-diazatetraasteranes by conceptual density functional theory and experiment

  • Zhichang Zhao
  • Peng Li
  • Qiangwen Fan
  • Hong YanEmail author
Original Research


Theoretical studies on predicting potential reactive sites of attractive compounds are of significance, which are capable of providing deeper insight into their chemical behaviors as well as foundations for discovering new drug molecules. The 3,9-diazatetraasterane derivatives are a kind of cage compounds equipping with potent biological activities. In this paper, predication of reactive sites of 3,9-diazatetraasteranes bearing phenyl and ester groups (6,12-diphenyl-3,9-diazahexacyclo[]-dodecane-1,5,7,11-tetracarboxylate) was carried out by the conceptual density functional theory. Firstly, a conformational search of 3,9-diazatetraasterane was performed by molecular dynamics simulations associating with Quantum Mechanics calculations in order to obtain relative stable conformers. And then the reactive site prediction of 3,9-diazatetraasterane was carried out by the Fukui function and condensed Fukui function. The results exhibited that the potentially chemical reactive site is the N atom of 3,9-diazatetraasterane scaffold, which is readily attacked by electrophilic agent. Meanwhile, the calculated results were validated by experimental outcomes in the derivation of 3,9-diazatetraasteranes.


3,9-diazatetraasterane Predicting the reactive site Conceptual density functional theory Fukui function 


Funding information

This work was financially supported by the Beijing Natural Science Foundation (No. KZ201510005004).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1299_MOESM1_ESM.docx (577 kb)
ESM 1 (DOCX 576 kb)


  1. 1.
    Zhu XH, Ni CL, Song XQ, Yan H, Zhong RG (2010) Synthesis of 3,9-diazatetraasteranes. Chin J Organ Chem 30:276–281Google Scholar
  2. 2.
    Voigt B, Coburger C, Monár J, Hilgeroth A (2007) Structure–activity relationships of novel N-acyloxy-1, 4-dihydropyridines as P-glycoprotein inhibitors. Bioorg Med Chem 15:5110–5113CrossRefGoogle Scholar
  3. 3.
    Liu YL, Tan HB, Yan H, Song XQ (2013) Design, synthesis and biological evaluation of 3,9-diazatetraasteranes as novel matrilysin inhibitors. Chem Biol Drug Des 82:567–578CrossRefGoogle Scholar
  4. 4.
    Coburger C, Wollmann J, Krug M, Baumert C, Seifert M, Molnár J, Lage H, Hilgeroth A (2010) Novel structure-activity relationships and selectivity profiling of cage dimeric 1,4-dihydropyridines as multidrug resistance (MDR) modulators. Bioorg Med Chem 18:4983–4990CrossRefGoogle Scholar
  5. 5.
    Richter M, Molnã rJ, Hilgeroth A (2006) Biological evaluation of bishydroxymethyl-substituted cage dimeric 1,4-dihydropyridines as a novel class of p-glycoprotein modulating agents in cancer cells. J Med Chem 49:2838–2840CrossRefGoogle Scholar
  6. 6.
    Hilgeroth A, Lilie H (2003) Structure-activity relationships of first bishydroxymethyl-substituted cage dimeric 4-aryl-1,4-dihydropyridines as HIV-1 protease inhibitors. Eur J Med Chem 38:495–499CrossRefGoogle Scholar
  7. 7.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  8. 8.
    Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728CrossRefGoogle Scholar
  9. 9.
    Domingo L, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748CrossRefGoogle Scholar
  10. 10.
    Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  11. 11.
    Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  12. 12.
    Pilepić V, Uršić S (2001) Nucleophilic reactivity of the nitroso group. Fukui function DFT calculations for nitrosobenzene and 2-methyl-2-nitrosopropane. J Mol Struct THEOCHEM 538:41–49CrossRefGoogle Scholar
  13. 13.
    Maache S, Bendjeddou A, Abbaz T, Gouasmia A, Villemin D (2016) Molecular structure, hyperpolarizability, NBO and Fukui function analysis of a series of 1, 4, 3, 5-oxathiadiazepane-4, 4-dioxides derived of proline. Pharm Lett 8:27–37Google Scholar
  14. 14.
    Kut M, Fizer M, Onysko M, Lendel V Reactions of N-alkenyl thioureas with p-alkoxyphenyltellurium trichlorides. J Heterocyclic ChemGoogle Scholar
  15. 15.
    Bevziuk K, Chebotarev A, Snigur D, Bazel Y, Fizer M, Sidey V (2017) Spectrophotometric and theoretical studies of the protonation of allura red AC and Ponceau 4R. J Mol Struct 1144:216–224CrossRefGoogle Scholar
  16. 16.
    Cimino P, Bifulco G, Evidente A, Abouzeid M, Riccio RA, Gomezpaloma L (2002) Extension of the J-based configuration analysis to multiple conformer equilibria: an application to Sapinofuranone A. Org Lett 4:2779–2782CrossRefGoogle Scholar
  17. 17.
    Harada R, Shigeta Y (2017) Efficient conformational search based on structural dissimilarity sampling: applications for reproducing structural transitions of proteins. J Chem Theory Comput 13:1411CrossRefGoogle Scholar
  18. 18.
    Aliev AE, Courtiermurias D (2007) Conformational analysis of L-prolines in water. J Phys Chem B 111:14034–14042CrossRefGoogle Scholar
  19. 19.
    Case DA, Cerutti DS, Cheatham IIITE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N et al (2017) AMBER 2017. University of California, San Francisco Accessed Apr 2017
  20. 20.
    Stewart JJP, MOPAC2016, Version 17.361, Stewart computational chemistry. Colorado Springs, CO Accessed 27 Dec 2017
  21. 21.
    Maia JD, Urquiza Carvalho GA, Mangueira Jr C, Santana SR, Cabral LA, Rocha GB (2012) GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J Chem Theory Comput 8:3072–3081CrossRefGoogle Scholar
  22. 22.
    Lu T, Molclus Program, Version 1.4, Beijing Kein Research Center for Natural Science, China, Accessed 1 Dec 2017
  23. 23.
    Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CTGoogle Scholar
  24. 24.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  25. 25.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  26. 26.
    Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835CrossRefGoogle Scholar
  27. 27.
    Cao J, Ren Q, Chen F, Lu T (2015) Comparative study on the methods for predicting the reactive site of nucleophilic reaction. Science china Chem 58:1845–1852CrossRefGoogle Scholar
  28. 28.
    Oláh J, Van Alsenoy C, Sannigrahi A (2002) Condensed Fukui functions derived from stockholder charges: assessment of their performance as local reactivity descriptors. J Phys Chem A 106:3885–3890CrossRefGoogle Scholar
  29. 29.
    Zhu XH, Ni CL, Yan H, Zhong RG (2009) Synthesis and X-ray crystallographic analysis of 1, 4-dihydropyridine photodimerization. J Photopolym Sci Technol 22:379–384CrossRefGoogle Scholar
  30. 30.
    Hilgeroth A, Baumeister U, Heinemann FW (1998) Novel solid-state synthesis of polyfunctionalized 3, 9-diazatetraasteranes. Eur J Org Chem 1998:1213–1218CrossRefGoogle Scholar
  31. 31.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  32. 32.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  33. 33.
    Dunning TH, Hay PJ (1977) Gaussian basis sets for molecular calculations. Methods of electronic structure theory. Springer, pp 1–27Google Scholar
  34. 34.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life Science and Bio-engineeringBeijing University of TechnologyBeijingChina

Personalised recommendations