Advertisement

Impact of neutral and acidic species on cycloalkenes nucleation

  • Xia Sheng
  • Xue Song
  • Cleopatra Ashley Ngwenya
  • Yuyu Wang
  • Xiong Gao
  • Hailiang ZhaoEmail author
Review Article
  • 7 Downloads

Abstract

Non-covalent hydrogen bond interactions between the π cloud of cycloalkenes and three atmospheric common nucleation precursors (H2S, H2O, and MeOH) have been investigated using DFT and CCSD(T). The structures and the energies of the 1:1 and 1:2 adducts were computed with the B3LYP-D3 method. The analysis of the investigated electronic properties and geometric parameters shows that cyclohexene is a stronger hydrogen bond acceptor than cyclopentene, then followed by 1,4-cyclohexadiene and 1,3-cyclohexadiene. Comparable red shifts of the OH-/SH-stretching vibrational frequencies were noticed for the studied clusters. Increasing the ring size enhances the hydrogen bond interaction, and increasing the π delocalization decreases the hydrogen bond interactions. This is further confirmed by Bader’s quantum theory of atoms in molecules. The nonadditivity effects were observed in the trimolecular complexes. All the complexes were analyzed by energy decomposition analysis to divide the interaction energy into individual components. Furthermore, the dipole moments and atmospheric implications were also investigated.

Keywords

Hydrogen bond New particle formation AIM DFT Gibbs free-energy of formation 

Notes

Acknowledgements

We thank Prof. Peifeng Su from Xiamen University for providing the generalized Kohn−Sham energy decomposition analysis (GKS-EDA) software package.

Funding information

This study is financially supported by the National Natural Science Foundation of China (21607037), the Fundamental Research Funds for the Henan Provincial Colleges, and Universities in Henan University of Technology (2017QNJH27, 2016QNJH05).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rosenfeld D, Sherwood S, Wood R, Donner L (2014) Climate effects of aerosol-cloud interactions. Science 343(6169):379–380.  https://doi.org/10.1126/science.1247490 Google Scholar
  2. 2.
    Zhang R (2010) Getting to the critical nucleus of aerosol formation. Science 328(5984):1366–1367.  https://doi.org/10.1126/science.1189732 Google Scholar
  3. 3.
    Kulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE, Lehtipalo K, Dal Maso M, Aalto PP, Junninen H, Paasonen P, Riipinen I, Lehtinen KEJ, Laaksonen A, Kerminen V-M (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7(9):1651–1667.  https://doi.org/10.1038/nprot.2012.091 Google Scholar
  4. 4.
    Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5(4):1053–1123.  https://doi.org/10.5194/acp-5-1053-2005 Google Scholar
  5. 5.
    Yu S, Rohit M, Kenneth S, Daiwen K, Jonathan P, Jeffrey Y, Daniel T, George P, MS A, Rao ST (2008) Evaluation of real-time PM2.5 forecasts and process analysis for PM2.5 formation over the Eastern United States using the eta-CMAQ forecast model during the 2004 ICARTT study. J Geophys Res-Atmos 113:D06204.  https://doi.org/10.1029/2007JD009226 Google Scholar
  6. 6.
    Merikanto J, Spracklen DV, Mann GW, Pickering SJ, Carslaw KS (2009) Impact of nucleation on global CCN. Atmos Chem Phys 9(21):8601–8616.  https://doi.org/10.5194/acp-9-8601-2009 Google Scholar
  7. 7.
    Spracklen DV, Carslaw KS, Kulmala M, Kerminen VM, Mann GW, Sihto SL (2006) The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos Chem Phys 6(12):5631–5648.  https://doi.org/10.5194/acp-6-5631-2006 Google Scholar
  8. 8.
    Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35(2):143–176.  https://doi.org/10.1016/j.jaerosci.2003.10.003 Google Scholar
  9. 9.
    Zhang R, Khalizov A, Wang L, Hu M, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112(3):1957–2011.  https://doi.org/10.1021/cr2001756 Google Scholar
  10. 10.
    Wang Z, Wu Z, Yue D, Shang D, Guo S, Sun J, Ding A, Wang L, Jiang J, Guo H, Gao J, Cheung HC, Morawska L, Keywood M, Hu M (2017) New particle formation in China: current knowledge and further directions. Sci Total Environ 577:258–266.  https://doi.org/10.1016/j.scitotenv.2016.10.177 Google Scholar
  11. 11.
    Kammer J, Perraudin E, Flaud PM, Lamaud E, Bonnefond JM, Villenave E (2018) Observation of nighttime new particle formation over the French Landes Forest. Sci Total Environ 621:1084–1092.  https://doi.org/10.1016/j.scitotenv.2017.10.118 Google Scholar
  12. 12.
    Temelso B, Morrell TE, Shields RM, Allodi MA, Wood EK, Kirschner KN, Castonguay TC, Archer KA, Shields GC (2012) Quantum mechanical study of sulfuric acid hydration: atmospheric implications. J Phys Chem A 116(9):2209–2224.  https://doi.org/10.1021/jp2119026 Google Scholar
  13. 13.
    Wang L, Khalizov AF, Zheng J, Xu W, Ma Y, Lal V, Zhang R (2010) Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat Geosci 3(4):238–242.  https://doi.org/10.1038/ngeo778 Google Scholar
  14. 14.
    Bianchi F, Trostl J, Junninen H, Frege C, Henne S, Hoyle CR, Molteni U, Herrmann E, Adamov A, Bukowiecki N, Chen X, Duplissy J, Gysel M, Hutterli M, Kangasluoma J, Kontkanen J, Kuerten A, Manninen HE, Muench S, Perakyla O, Petaja T, Rondo L, Williamson C, Weingartner E, Curtius J, Worsnop DR, Kulmala M, Dommen J, Baltensperger U (2016) New particle formation in the free troposphere: a question of chemistry and timing. Science 352(6289):1109–1112.  https://doi.org/10.1126/science.aad5456 Google Scholar
  15. 15.
    Henschel H, Navarro JCA, Yli-Juuti T, Kupiainen-Määttä O, Olenius T, Ortega IK, Clegg SL, Kurtén T, Riipinen I, Vehkamäki H (2014) Hydration of atmospherically relevant molecular clusters: computational chemistry and classical thermodynamics. J Phys Chem A 118(14):2599–2611.  https://doi.org/10.1021/jp500712y Google Scholar
  16. 16.
    Sihto SL, Kulmala M, Kerminen VM, Dal Maso M, Petäjä T, Riipinen I, Korhonen H, Arnold F, Janson R, Boy M, Laaksonen A, Lehtinen KEJ (2006) Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos Chem Phys 6(12):4079–4091.  https://doi.org/10.5194/acp-6-4079-2006 Google Scholar
  17. 17.
    Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin RL, Hyvärinen A-P, Lihavainen H, Kulmala M (2010) The role of sulfuric acid in atmospheric nucleation. Science 327(5970):1243–1246.  https://doi.org/10.1126/science.1180315 Google Scholar
  18. 18.
    Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S, Franchin A, Gagne S, Ickes L, Kuerten A, Kupc A, Metzger A, Riccobono F, Rondo L, Schobesberger S, Tsagkogeorgas G, Wimmer D, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Downard A, Ehn M, Flagan RC, Haider S, Hansel A, Hauser D, Jud W, Junninen H, Kreissl F, Kvashin A, Laaksonen A, Lehtipalo K, Lima J, Lovejoy ER, Makhmutov V, Mathot S, Mikkila J, Minginette P, Mogo S, Nieminen T, Onnela A, Pereira P, Petaja T, Schnitzhofer R, Seinfeld JH, Sipila M, Stozhkov Y, Stratmann F, Tome A, Vanhanen J, Viisanen Y, Vrtala A, Wagner PE, Walther H, Weingartner E, Wex H, Winkler PM, Carslaw KS, Worsnop DR, Baltensperger U, Kulmala M (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476(7361):429–433.  https://doi.org/10.1038/nature10343 Google Scholar
  19. 19.
    Almeida J, Schobesberger S, Kürten A, Ortega IK, Kupiainen-Määttä O, Praplan AP, Adamov A, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Donahue NM, Downard A, Dunne E, Duplissy J, Ehrhart S, Flagan RC, Franchin A, Guida R, Hakala J, Hansel A, Heinritzi M, Henschel H, Jokinen T, Junninen H, Kajos M, Kangasluoma J, Keskinen H, Kupc A, Kurtén T, Kvashin AN, Laaksonen A, Lehtipalo K, Leiminger M, Leppä J, Loukonen V, Makhmutov V, Mathot S, McGrath MJ, Nieminen T, Olenius T, Onnela A, Petäjä T, Riccobono F, Riipinen I, Rissanen M, Rondo L, Ruuskanen T, Santos FD, Sarnela N, Schallhart S, Schnitzhofer R, Seinfeld JH, Simon M, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Tröstl J, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Virtanen A, Vrtala A, Wagner PE, Weingartner E, Wex H, Williamson C, Wimmer D, Ye P, Yli-Juuti T, Carslaw KS, Kulmala M, Curtius J, Baltensperger U, Worsnop DR, Vehkamäki H, Kirkby J (2013) Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature 502:359.  https://doi.org/10.1038/nature12663 Google Scholar
  20. 20.
    Schobesberger S, Junninen H, Bianchi F, Lönn G, Ehn M, Lehtipalo K, Dommen J, Ehrhart S, Ortega IK, Franchin A, Nieminen T, Riccobono F, Hutterli M, Duplissy J, Almeida J, Amorim A, Breitenlechner M, Downard AJ, Dunne EM, Flagan RC, Kajos M, Keskinen H, Kirkby J, Kupc A, Kürten A, Kurtén T, Laaksonen A, Mathot S, Onnela A, Praplan AP, Rondo L, Santos FD, Schallhart S, Schnitzhofer R, Sipilä M, Tomé A, Tsagkogeorgas G, Vehkamäki H, Wimmer D, Baltensperger U, Carslaw KS, Curtius J, Hansel A, Petäjä T, Kulmala M, Donahue NM, Worsnop DR (2013) Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. P Natl Acad Sci USA 110(43):17223–17228.  https://doi.org/10.1073/pnas.1306973110 Google Scholar
  21. 21.
    Riccobono F, Schobesberger S, Scott CE, Dommen J, Ortega IK, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne EM, Duplissy J, Ehrhart S, Flagan RC, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kürten A, Kvashin AN, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petäjä T, Praplan AP, Santos FD, Schallhart S, Seinfeld JH, Sipilä M, Spracklen DV, Stozhkov Y, Stratmann F, Tomé A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner PE, Weingartner E, Wex H, Wimmer D, Carslaw KS, Curtius J, Donahue NM, Kirkby J, Kulmala M, Worsnop DR, Baltensperger U (2014) Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344(6185):717–721.  https://doi.org/10.1126/science.1243527 Google Scholar
  22. 22.
    Partanen L, Vehkamäki H, Hansen K, Elm J, Henschel H, Kurtén T, Halonen R, Zapadinsky E (2016) Effect of conformers on free energies of atmospheric complexes. J Phys Chem A 120(43):8613–8624.  https://doi.org/10.1021/acs.jpca.6b04452 Google Scholar
  23. 23.
    Ehn M, Thornton JA, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I-H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen LB, Jørgensen S, Kjaergaard HG, Canagaratna M, Maso MD, Berndt T, Petäjä T, Wahner A, Kerminen V-M, Kulmala M, Worsnop DR, Wildt J, Mentel TF (2014) A large source of low-volatility secondary organic aerosol. Nature 506:476.  https://doi.org/10.1038/nature13032 Google Scholar
  24. 24.
    Mellouki A, Wallington TJ, Chen J (2015) Atmospheric chemistry of oxygenated volatile organic compounds: impacts on air quality and climate. Chem Rev 115(10):3984–4014.  https://doi.org/10.1021/cr500549n Google Scholar
  25. 25.
    Ludlum KH, Bailey BS (1976) Hydrocarbon involvement in photochemical smog formation in Los Angeles atmosphere. Comments. Environ Sci Technol 10(12):1162–1163.  https://doi.org/10.1021/es60122a011 Google Scholar
  26. 26.
    Kowalczyk GS, Choquette CE, Gordon GE (1978) Chemical element balances and identification of air pollution sources in Washington, D.C. Atmos Environ 12(5):1143–1153.  https://doi.org/10.1016/0004-6981(78)90361-X Google Scholar
  27. 27.
    Liu SJ, Jia L, Xu YF, Tsona NT, Ge SS, Du L (2017) Photooxidation of cyclohexene in the presence of SO2: SOA yield and chemical composition. Atmos Chem Phys 17(21):13329–13343.  https://doi.org/10.5194/acp-17-13329-2017 Google Scholar
  28. 28.
    Shi G, Xu J, Peng X, Xiao Z, Chen K, Tian Y, Guan X, Feng Y, Yu H, Nenes A, Russell AG (2017) pH of aerosols in a polluted atmosphere: source contributions to highly acidic aerosol. Environ Sci Technol 51(8):4289–4296.  https://doi.org/10.1021/acs.est.6b05736 Google Scholar
  29. 29.
    Sarnela N, Jokinen T, Nieminen T, Lehtipalo K, Junninen H, Kangasluoma J, Hakala J, Taipale R, Schobesberger S, Sipila M, Larnimaa K, Westerholm H, Heijari J, Kerminen V-M, Petaja T, Kulmala M (2015) Sulphuric acid and aerosol particle production in the vicinity of an oil refinery. Atmos Environ 119:156–166.  https://doi.org/10.1016/j.atmosenv.2015.08.033 Google Scholar
  30. 30.
    Andrews E, Ogren JA, Bonasoni P, Marinoni A, Cuevas E, Rodriguez S, Sun JY, Jaffe DA, Fischer EV, Baltensperger U, Weingartner E, Coen MC, Sharma S, Macdonald AM, Leaitch WR, Lin NH, Laj P, Arsov T, Kalapov I, Jefferson A, Sheridan P (2011) Climatology of aerosol radiative properties in the free troposphere. Atmos Res 102(4):365–393.  https://doi.org/10.1016/j.atmosres.2011.08.017 Google Scholar
  31. 31.
    Yu H, Ren L, Kanawade VP (2017) New particle formation and growth mechanisms in highly polluted environments. Curr Pollution Rep 3(4):245–253.  https://doi.org/10.1007/s40726-017-0067-3 Google Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford, CT, USAGoogle Scholar
  33. 33.
    Wilson AK, Dunning TH (2003) SO2 revisited: impact of tight d augmented correlation consistent basis sets on structure and energetics. J Chem Phys 119(22):11712–11714.  https://doi.org/10.1063/1.1624591 Google Scholar
  34. 34.
    Wilson AK, Dunning TH (2004) The HSO-SOH isomers revisited: the effect of tight d functions. J Phys Chem A 108(15):3129–3133.  https://doi.org/10.1021/jp037160s Google Scholar
  35. 35.
    Elm J, Bilde M, Mikkelsen KV (2012) Assessment of density functional theory in predicting structures and free energies of reaction of atmospheric prenucleation clusters. J Chem Theory Comput 8(6):2071–2077.  https://doi.org/10.1021/ct300192p Google Scholar
  36. 36.
    Zhang Q, Du L (2016) Hydrogen bonding in the carboxylic acid–aldehyde complexes. Comput Theor Chem 1078:123–128.  https://doi.org/10.1016/j.comptc.2016.01.007 Google Scholar
  37. 37.
    Cheng S, Tang S, Tsona NT, Du L (2017) The influence of the position of the double bond and ring size on the stability of hydrogen bonded complexes. Sci Rep 7(1):11310.  https://doi.org/10.1038/s41598-017-11921-7 Google Scholar
  38. 38.
    Du L, Tang S, Hansen AS, Frandsen BN, Maroun Z, Kjaergaard HG (2017) Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur. Chem Phys Lett 667:146–153.  https://doi.org/10.1016/j.cplett.2016.11.045 Google Scholar
  39. 39.
    Li S, Kjaergaard HG, Du L (2016) Infrared spectroscopic probing of dimethylamine clusters in an Ar matrix. J Environ Sci-China 40:51–59.  https://doi.org/10.1016/j.jes.2015.09.012 Google Scholar
  40. 40.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566.  https://doi.org/10.1080/00268977000101561 Google Scholar
  41. 41.
    Mierzwicki K, Latajka Z (2003) Basis set superposition error in N-body clusters. Chem Phys Lett 380(5):654–664.  https://doi.org/10.1016/j.cplett.2003.09.038 Google Scholar
  42. 42.
    Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comput 9(8):3263–3266.  https://doi.org/10.1021/ct400420r Google Scholar
  43. 43.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363.  https://doi.org/10.1002/jcc.540141112 Google Scholar
  44. 44.
    Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131(1):014102.  https://doi.org/10.1063/1.3159673 Google Scholar
  45. 45.
    Jensen FR, Bushweller CH (1969) Conformational preferences and interconversion barriers in cyclohexene and derivatives. J Am Chem Soc 91(21):5774–5782.  https://doi.org/10.1021/ja01049a013 Google Scholar
  46. 46.
    Pawar DM, Noe EA (1998) Conformational study of cyclohexene oxide by dynamic NMR spectroscopy and ab initio molecular orbital calculations. J Am Chem Soc 120(7):1485–1488.  https://doi.org/10.1021/ja972493m Google Scholar
  47. 47.
    Heger M, Mata RA, Suhm MA (2015) Soft hydrogen bonds to alkenes: the methanol-ethene prototype under experimental and theoretical scrutiny. Chem Sci 6(7):3738–3745.  https://doi.org/10.1039/c5sc01002k Google Scholar
  48. 48.
    Peterson KI, Klemperer W (1986) Water–hydrocarbon interactions: structure and internal rotation of the water–ethylene complex. J Chem Phys 85(2):725–732.  https://doi.org/10.1063/1.451279 Google Scholar
  49. 49.
    Du L, Mackeprang K, Kjaergaard HG (2013) Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex. Phys Chem Chem Phys 15(25):10194–10206.  https://doi.org/10.1039/c3cp50243k Google Scholar
  50. 50.
    Du L, Lane JR, Kjaergaard HG (2012) Identification of the dimethylamine-trimethylamine complex in the gas phase. J Chem Phys 136(18):184305.  https://doi.org/10.1063/1.4707707 Google Scholar
  51. 51.
    Du L, Kjaergaard HG (2011) Fourier transform infrared spectroscopy and theoretical study of dimethylamine dimer in the gas phase. J Phys Chem A 115(44):12097–12104.  https://doi.org/10.1021/jp206762j Google Scholar
  52. 52.
    Li QZ, Cheng JB, Li WZ, Gong BA, Sun JZ (2009) Comparative study on the nonadditivity of methyl group in lithium bonding and hydrogen bonding. Int J Quant Chem 109(5):1127–1134.  https://doi.org/10.1002/qua.21929 Google Scholar
  53. 53.
    Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta A 55(7–8):1585–1612.  https://doi.org/10.1016/S1386-1425(98)00348-5 Google Scholar
  54. 54.
    Tang S, Tsona NT, Du L (2018) Ring-size effects on the stability and spectral shifts of hydrogen bonded cyclic ethers complexes. Sci Rep 8(1):1553.  https://doi.org/10.1038/s41598-017-18191-3 Google Scholar
  55. 55.
    Jiang X, Tsona NT, Tang S, Du L (2018) Hydrogen bond docking preference in furans: OH⋯π vs. OH⋯O. Spectrochim Acta A 191:155–164.  https://doi.org/10.1016/j.saa.2017.10.006 Google Scholar
  56. 56.
    Koch U, Popelier P (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754.  https://doi.org/10.1021/j100024a016 Google Scholar
  57. 57.
    Grabowski SJ (2004) Hydrogen bonding strength-measures based on geometric and topological parameters. J Phys Org Chem 17(1):18–31.  https://doi.org/10.1002/poc.685 Google Scholar
  58. 58.
    Bushmarinov IS, Lyssenko KA, Antipin MY (2009) Atomic energy in the ‘atoms in molecules’ theory and its use for solving chemical problems. Russ Chem Rev 78(4):283–302.  https://doi.org/10.1070/RC2009v078n04ABEH004017 Google Scholar
  59. 59.
    Umeyama H, Morokuma K (1976) Origin of alkyl substituent effect in the proton affinity of amines, alcohols, and ethers. J Am Chem Soc 98(15):4400–4404.  https://doi.org/10.1021/ja00431a011 Google Scholar
  60. 60.
    Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory surveysecond edn. Academic Press, New YorkGoogle Scholar
  61. 61.
    Lantto V, Mizsei J (1991) H2S monitoring as an air pollutant with silver-doped SnO2 thin-film sensors. Sensors Actuators B Chem 5(1):21–25.  https://doi.org/10.1016/0925-4005(91)80214-5 Google Scholar
  62. 62.
    Bitziou E, Joseph MB, Read TL, Palmer N, Mollart T, Newton ME, Macpherson JV (2014) In situ optimization of pH for parts-per-billion electrochemical detection of dissolved hydrogen sulfide using boron doped diamond flow electrodes. Anal Chem 86(21):10834–10840.  https://doi.org/10.1021/ac502941h Google Scholar
  63. 63.
    Yvon SA, Cooper DJ, Koropalov V, Saltzman ES (1993) Atmospheric hydrogen sulfide over the equatorial Pacific (SAGA 3). J Geophys Res-Atmos 98(D9):16979–16983.  https://doi.org/10.1029/92JD00451 Google Scholar
  64. 64.
    Nadykto AB, Mäkelä JM, Yu F, Kulmala M, Laaksonen A (2003) Comparison of the experimental mobility equivalent diameter for small cluster ions with theoretical particle diameter corrected by effect of vapour polarity. Chem Phys Lett 382(1–2):6–11.  https://doi.org/10.1016/j.cplett.2003.09.127 Google Scholar
  65. 65.
    Zhao J, Khalizov A, Zhang R, McGraw R (2009) Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors. J Phys Chem A 113(4):680–689.  https://doi.org/10.1021/jp806693r Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry, Chemical and Environmental EngineeringHenan University of TechnologyZhengzhouChina
  2. 2.College of Mathematical ScienceTianjin Normal UniversityTianjinChina
  3. 3.Environment Research Institute, Shandong UniversityJinanChina

Personalised recommendations