Structural Chemistry

, Volume 30, Issue 5, pp 1843–1852 | Cite as

Water-gas-shift reaction over nickel catalysts: DFT studies and kinetic modeling

  • Ali Nakhaei PourEmail author
  • Sayyed Faramarz Tayyari
Original Research


Density functional theory (DFT) calculations were used to study the mechanism of water gas shift (WGS) reaction on Ni (111) surfaces. Three sets of elementary reactions based on the formate intermediate and oxidation-reduction mechanisms are considered in this study. Formate intermediate is produced via dissociation and non-dissociation adsorption of H2O in the proposed mechanisms. The adsorption energy for all surface species and the activation barriers for the rate-determining steps in these WGS mechanisms were calculated. The overall reaction rates were developed based on the considered mechanisms. Based on the Sabatier principle, the effects of CO and H2O adsorption energies on the activation energy of the rate-determining reactions in the proposed mechanisms are considered. According to the calculated overall activation energies, the formate intermediates produced from the reaction between adsorbed H2O and CO species provide the best condition for the overall WGS reaction.


Water gas shift reaction DFT Micro-kinetic Nickel Catalyst 


Funding information

Financial support was provided by the Ferdowsi University of Mashhad, Iran (Grant No. 2 /45992-11/7/96).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    LeValley TL, Richard AR, Fan M (2014) The progress in water gas shift and steam reforming hydrogen production technologies—a review. Int J Hydrog Energy 39(30):16983–17000CrossRefGoogle Scholar
  2. 2.
    Lang C, Sécordel X, Courson C (2017) Copper-based water gas shift catalysts for hydrogen rich syngas production from biomass steam gasification. Energy Fuel 31(11):12932–12941CrossRefGoogle Scholar
  3. 3.
    Wheeler C, Jhalani A, Klein E, Tummala S, Schmidt L (2004) The water–gas-shift reaction at short contact times. J Catal 223(1):191–199CrossRefGoogle Scholar
  4. 4.
    Catapan RC, Oliveira AA, Chen Y, Vlachos DG (2012) DFT study of the water–gas shift reaction and coke formation on Ni (111) and Ni (211) surfaces. J Phys Chem C 116(38):20281–20291CrossRefGoogle Scholar
  5. 5.
    Sanchez-Escribano V, Vargas ML, Finocchio E, Busca G (2007) On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: an IR study. Appl Catal A Gen 316(1):68–74CrossRefGoogle Scholar
  6. 6.
    Seok S-H, Han SH, Lee JS (2001) The role of MnO in Ni/MnO-Al 2 O 3 catalysts for carbon dioxide reforming of methane. Appl Catal A Gen 215(1):31–38CrossRefGoogle Scholar
  7. 7.
    Smith R, Loganathan M, Shantha MS (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8(8):4Google Scholar
  8. 8.
    Nakhaei Pour A, Housaindokht MR, Tayyari SF, Zarkesh J, Shahri SMK (2011) Water-gas-shift kinetics over a Fe/cu/La/Si catalyst in Fischer–Tropsch synthesis. Chem Eng Res Des 89(3):262–269CrossRefGoogle Scholar
  9. 9.
    Nakhaei Pour A, Housaindokht MR, Zarkesh J, Tayyari SF (2010) Water-gas-shift kinetic over nano-structured iron catalyst in Fischer–Tropsch synthesis. J Nat Gas Sci Eng 2(2):79–85CrossRefGoogle Scholar
  10. 10.
    Van Der Laan GP, Beenackers A (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Cat Rev Sci Eng 41(3–4):255–318CrossRefGoogle Scholar
  11. 11.
    Mohsenzadeh A, Richards T, Bolton K (2016) DFT study of the water gas shift reaction on Ni (111), Ni (100) and Ni (110) surfaces. Surf Sci 644:53–63CrossRefGoogle Scholar
  12. 12.
    Lin C-H, Chen C-L, Wang J-H (2011) Mechanistic studies of water–gas-shift reaction on transition metals. J Phys Chem C 115(38):18582–18588CrossRefGoogle Scholar
  13. 13.
    Nakhaei Pour A, Housaindokht M, Torabi F (2014) Water–gas shift kinetics over lanthanum-promoted iron catalyst in Fischer–Tropsch synthesis: thermodynamic analysis of nanoparticle size effect. J Iran Chem Soc 11(6):1639–1648. CrossRefGoogle Scholar
  14. 14.
    Cerda JR, Andres PL, Cebollada A, Miranda R, Navas E, Schuster P, Schneider CM, Kirschner J (1993) Epitaxial growth of cobalt films on Cu(100): a crystallographic LEED determination. J Phys Condens Matter 5(14):2055CrossRefGoogle Scholar
  15. 15.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502CrossRefGoogle Scholar
  16. 16.
    Nakhaei Pour A, Keyvanloo Z, Izadyar M, Modaresi SM (2015) Dissociative hydrogen adsorption on the cubic cobalt surfaces: a DFT study. Int J Hydrog Energy 40(22):7064–7071CrossRefGoogle Scholar
  17. 17.
    Nakhaei Pour A, Karimi J, Keyvanloo Z, Hashemian M (2016) Size dependence adsorption of hydrogen on cobalt clusters: a DFT study. In: Journal of Nano Res. Trans Tech Publ, pp 100–111Google Scholar
  18. 18.
    Jeon YT, Moon JY, Lee GH, Park J, Chang Y (2006) Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J Phys Chem B 110(3):1187–1191CrossRefGoogle Scholar
  19. 19.
    Niemantsverdriet J (2006) Concepts of modern catalysis and kinetics. John Wiley & Sons, HobokenGoogle Scholar
  20. 20.
    Mohsenzadeh A, Bolton K, Richards T (2014) DFT study of the adsorption and dissociation of water on Ni (111), Ni (110) and Ni (100) surfaces. Surf Sci 627:1–10CrossRefGoogle Scholar
  21. 21.
    Fajín JL, Cordeiro MND, Illas F, Gomes JR (2010) Descriptors controlling the catalytic activity of metallic surfaces toward water splitting. J Catal 276(1):92–100CrossRefGoogle Scholar
  22. 22.
    Seenivasan H, Tiwari AK (2013) Water dissociation on Ni (100) and Ni (111): effect of surface temperature on reactivity. J Chem Phys 139(17):174707CrossRefGoogle Scholar
  23. 23.
    Zhou Y-H, Lv P-H, Wang G-C (2006) DFT studies of methanol decomposition on Ni (100) surface: compared with Ni (111) surface. J Mol Catal A Chem 258(1):203–215CrossRefGoogle Scholar
  24. 24.
    Christmann K, Behm R, Ertl G, Van Hove M, Weinberg W (1979) Chemisorption geometry of hydrogen on Ni (111): order and disorder. J Chem Phys 70(9):4168–4184CrossRefGoogle Scholar
  25. 25.
    Ren J, Meng S (2008) First-principles study of water on copper and noble metal (110) surfaces. Phys Rev B 77(5):054110CrossRefGoogle Scholar
  26. 26.
    Vesselli E, Rogatis LD, Ding X, Baraldi A, Savio L, Vattuone L, Rocca M, Fornasiero P, Peressi M, Baldereschi A (2008) Carbon dioxide hydrogenation on Ni (110). J Am Chem Soc 130(34):11417–11422CrossRefGoogle Scholar
  27. 27.
    Stuckless J, Al-Sarraf N, Wartnaby C, King D (1993) Calorimetric heats of adsorption for CO on nickel single crystal surfaces. J Chem Phys 99(3):2202–2212CrossRefGoogle Scholar
  28. 28.
    Christmann K, Schober O, Ertl G, Neumann M (1974) Adsorption of hydrogen on nickel single crystal surfaces. J Chem Phys 60(11):4528–4540CrossRefGoogle Scholar
  29. 29.
    Benndorf C, Madey TE (1988) Adsorption of H2O on clean and oxygen-preposed Ni (110). Surf Sci 194(1–2):63–91CrossRefGoogle Scholar
  30. 30.
    Nakhaei Pour A, Housaindokht MR (2017) A new kinetic model for direct CO2 hydrogenation to higher hydrocarbons on a precipitated iron catalyst: effect of catalyst particle size. J Energy Chem 26(3):359–367CrossRefGoogle Scholar
  31. 31.
    Nakhaei Pour A, Housaindokht MR, Monhemi H (2016) A new LHHW kinetic model for CO2 hydrogenation over an iron catalyst. Prog React Kinet Mech 41(2):159–169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations