Advertisement

The strange case of achiral compounds which were reported to always crystallize in the same chiral group

  • Ibon AlkortaEmail author
  • José Elguero
Review Article
  • 52 Downloads

Abstract

In the present review, one of the mysteries of chemistry, the non-stochastic preference for one enantiomer during crystallization processes, is discussed with some examples of the literature and one published by our own group.

Keywords

Cryptochirality Bayesian model Scalemic Absolute asymmetric synthesis Viedma ripening 

Notes

Acknowledgements

Computer, storage, and other resources from the CTI (CSIC) are gratefully acknowledged. This publication is dedicated to Professor Meir Lahav for his seminal contributions to this field.

Funding information

This work was carried out with financial support from the Ministerio de Economía y Competitividad (Project Nos. CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (Project Fotocarbon, ref. S2013/MIT-2841).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Azeroual S, Surprenant J, Lazzara TD, Kocun M, Tao Y, Cuccia LA, Lehn JM (2012) Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates. Chem Commun 48:2292–2294CrossRefGoogle Scholar
  2. 2.
    McLaughlin DT, Nguyen TPT, Mengnjo L, Bian C, Leun YH, Goodfellow E, Ramrup P, Woo S, Cuccia LA (2014) Viedma ripening of conglomerate crystals of achiral molecules monitored using solid-state circular dichroism. Cryst Growth Des 14:1067–1076CrossRefGoogle Scholar
  3. 3.
    Lennartson A, Håkansson M (2015) Absolute asymmetric synthesis of five-coordinate complexes. New J Chem 39:5936–5943CrossRefGoogle Scholar
  4. 4.
    Quesada-Moreno MM, Cruz-Cabeza AJ, Avilés-Moreno JR, Cabildo P, Claramunt RM, Alkorta I, Elguero J, Zúñiga FJ, López-González JJ (2017) The curious case of 2-propyl-1H-benzimidazole in the solid state: an experimental and theoretical study. J Phys Chem A 121:5665–5674CrossRefGoogle Scholar
  5. 5.
    Mislow K (2003) Absolute asymmetric synthesis: a commentary. Collect Czechoslov Chem Commun 68:849–864CrossRefGoogle Scholar
  6. 6.
    Mislow K, Bickart P (1976/1977) An epistemological note on chirality. Isr J Chem 15:1–6Google Scholar
  7. 7.
    Pályi G, Kurdi R, Zucchi C (2017) Advances in asymmetric autocatalysis and related topics. Academic Press, Elsevier, LondonGoogle Scholar
  8. 8.
    (2007) New frontiers in asymmetric catalysis. In: Mikami K, Lautens M (eds) Wiley, HobokenGoogle Scholar
  9. 9.
    Vestergren M, Johansson A, Lennartson A, Håkansson M (2004) Non-stochastic homochiral helix crystallization: cryptochirality in control? Mendeleev Commun 14:259–260CrossRefGoogle Scholar
  10. 10.
    Viedma C (2007) Selective chiral symmetry breaking during crystallization: parity violation or cryptochiral environment in control? Cryst Growth Des 7:553–556CrossRefGoogle Scholar
  11. 11.
    Eliel EL (1997) Infelicitous stereochemical nomenclature. Chirality 9:428–430CrossRefGoogle Scholar
  12. 12.
    Quesada-Moreno MM, Avilés-Moreno JR, López-González JJ, Jacob K, Vendier L, Etienne M, Alkorta I, Elguero J, Claramunt RM (2017) Supramolecular organization of perfluorinated 1H-indazoles in the solid state using X-ray crystallography, SSNMR and sensitive (VCD) and non sensitive (MIR, FIR and Raman) to chirality vibrational spectroscopies. Phys Chem Chem Phys 19:1632–1643CrossRefGoogle Scholar
  13. 13.
    Jacques J, Collet A, Wilen SH (1994) Enantiomers, racemates, and resolutions. Krieger Publishing Company, MalabarGoogle Scholar
  14. 14.
    Ribó JM, Crusats J, Sagués F, Claret J, Rubires R (2001) Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292:2063–2066CrossRefGoogle Scholar
  15. 15.
    Arteaga O, Canillas A, El-Hachemi Z, Crusats J, Ribó JM (2015) Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering. Nanoscale 7:20435–20441CrossRefGoogle Scholar
  16. 16.
    Lennartson A, Olssob S, Sundberg J, Håkansson M (2009) A different approach to enantioselective organic synthesis: absolute asymmetric synthesis of organometallic reagents. Angew Chem Int Ed 48:3137–3140CrossRefGoogle Scholar
  17. 17.
    Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC, Barron LD (1998) Absolute asymmetric synthesis under physical fields: facts and fictions. Chem Rev 98:2391–2404CrossRefGoogle Scholar
  18. 18.
    Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed Engl 38:3418–3438CrossRefGoogle Scholar
  19. 19.
    Viedma C (2006) Chiral symmetry breaking during crystallization: complete chiral purity induced by non-linear autocatalysis. Phys Rev Lett 94:065504CrossRefGoogle Scholar
  20. 20.
    Viedma C, Cintas P (2011) Homochirality beyond grinding: deracemizing chiral crystals by temperature gradient under boiling. Chem Commun 47:12786–12788CrossRefGoogle Scholar
  21. 21.
    Steendam RRE, Harmsen B, Meekes H, van Enckevort WJP, Kaptein B, Kellogg RM, Raap J, Rutjes FPJT, Vlieg E (2013) Controlling the effect of chiral impurities on Viedma ripening. Cryst Growth Des 13:4776–4780CrossRefGoogle Scholar
  22. 22.
    Kawasaki T, Suzuki K, Shimizu M, Ishikawa K, Soai K (2006) Spontaneous absolute asymmetric synthesis in the presence of achiral silica gel in conjunction with asymmetric autocatalysis. Chirality 18:479–482CrossRefGoogle Scholar
  23. 23.
    Weissbuch I, Addadi L, Leisetowitz L, Lahav M (1988) Total asymmetric transformations at interfaces with centrosymmetric crystals: role of hydrophobic and kinetic effects in the crystallization of the system glycine/.alpha.-amino acids. J Am Chem Soc 110:561–567CrossRefGoogle Scholar
  24. 24.
    Lahav M, Weissbuch I, Shavit E, Reiner C, Nicholson GJ, Schurig V (2006) Parity violation energetic difference and enantiomorphous crystals-caveats; reinvestigation of tyrosine crystallization. Orig Life Evol Biosph 36:151–170CrossRefGoogle Scholar
  25. 25.
    Jaakkola S, Sharma V, Annila A (2008) Cause of chirality consensus. Curr Chem Biol 2:153–158Google Scholar
  26. 26.
    Plasson R, Brandenburg A (2010) Homochirality and the need for energy. Orig Life Evol Biosph 40:93–110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain

Personalised recommendations