Enhancing effects of π-hole tetrel bonds on the σ-hole interactions in complexes involving F2TO (T = Si, Ge, Sn)

  • Lijuan Wang
  • Xiaoyan Li
  • Yanli Zeng
  • Lingpeng Meng
  • Xueying ZhangEmail author
Original Research


The bimolecular and termolecular complexes involving F2TO (T = Si, Ge, Sn) and XCN/BrY (X = H, Br, CH3, and PH2; Y = F, CN, OH, and H) were designed to form the π-hole tetrel bonds and different sorts of σ-hole interactions, to investigate the influence of π-hole tetrel bonds on the σ-hole interactions. The effect of π-hole tetrel bonds on the σ-hole interactions in three series HCN···F2TO···HCN, HCN···F2SiO···XCN, and HCN···F2SiO···BrY is reflected by the changes in geometry, interaction energy, and charge transfer. With the formation of π-hole tetrel bond, the VS, min value outside the oxygen atom of F2TO becomes more negative, resulting in a stronger σ-hole interaction. Comparing with the bimolecular complex, the σ-hole binding distance and binding angle in the corresponding termolecular complex changes a lot, with the formation of another tetrel bond. The σ-hole interaction energy is enhanced more than 100% in most of the complexes with the exception of HCN···F2SiO···BrCN. The enhancing effect is related to the strength of π-hole tetrel bond, but has no relationship with the strength of σ-hole interactions. In particular, the σ-hole tetrel bond between F2SiO and CH3CN varies from a weak tetrel bond in the bimolecular complex F2SiO···CH3CN to a moderate hydrogen bond in the termolecular complex HCN···F2SiO···CH3CN.


π-Hole tetrel bond σ-Hole interaction Noncovalent interaction index Enhancing effect 



This work was supported by the Natural Science Foundation of Hebei Province (Contract Nos. B2018205198 and B2016205042), the Education Department Foundation of Hebei Province (Contract No. ZD2018066), and the Foundation of Hebei Normal University (Contract No. L2018Z04).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hobza P, Müller-Dethlefs K (2009) Chapter 1: Non-covalent interactions: theory and experiment. RSC Theoretical and Computational Chemistry Series No. 2. Royal Society of Chemistry, LondonGoogle Scholar
  2. 2.
    Stone AJ (2013) The theory of intermolecular forces. Oxford University Press, United KingdomCrossRefGoogle Scholar
  3. 3.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, Oxford, p 313CrossRefGoogle Scholar
  4. 4.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005). Acc Chem Res 38:386–395CrossRefGoogle Scholar
  5. 5.
    Clark T, Hennemann M, Murray JS, Politzer P (2007). J Mol Model 13:291–296CrossRefGoogle Scholar
  6. 6.
    Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007). J Mol Model 13:305–311CrossRefGoogle Scholar
  7. 7.
    Murray JS, Lane P, Politzer P (2009). J Mol Model 15:723–729CrossRefGoogle Scholar
  8. 8.
    Politzer P, Murray JS, Clark T (2010). Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  9. 9.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012). J Mol Model 18:541–548CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS, Clark T (2013). Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  11. 11.
    Politzer P, Murray JS (2017). J Comput Chem 39:464–471CrossRefGoogle Scholar
  12. 12.
    Wang WZ, Ji BM, Zhang Y (2009). J Phys Chem A 113:8132–8135CrossRefGoogle Scholar
  13. 13.
    Azofra LM, Alkorta I, Scheiner S (2014). Theor Chem Accounts 133:1586–1593CrossRefGoogle Scholar
  14. 14.
    Pascoe DJ, Ling KB, Cockroft SL (2017). J Am Chem Soc 139:15160–15167CrossRefGoogle Scholar
  15. 15.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011). Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  16. 16.
    Scheiner S (2013). Acc Chem Res 46:280–288CrossRefGoogle Scholar
  17. 17.
    Bauzá A, Ramis R, Frontera A (2014). J Phys Chem A 118:2827–2834CrossRefGoogle Scholar
  18. 18.
    Bauzá A, Mooibroek TJ, Frontera A (2015). Chem Commun 51:1491–1493CrossRefGoogle Scholar
  19. 19.
    Bauzá A, Mooibroek TJ, Frontera A (2013). Angew Chem Int Ed 52:12317–12321CrossRefGoogle Scholar
  20. 20.
    Bauzá A, Mooibroek TJ, Frontera A (2016). Chem Rec 16:473–487CrossRefGoogle Scholar
  21. 21.
    Scheiner S (2017). J Phys Chem A 121:5561–5568CrossRefGoogle Scholar
  22. 22.
    Shen SJ, Zeng YL, Li XY, Meng LP, Zhang XY (2017). Int J Quantum Chem 118:e25521–e25532CrossRefGoogle Scholar
  23. 23.
    Grabowski SJ (2015). ChemPhysChem 16:1470–1479CrossRefGoogle Scholar
  24. 24.
    Gao L, Zeng YL, Zhang XY, Meng LP (2016). J Comput Chem 37:1321–1327CrossRefGoogle Scholar
  25. 25.
    Grabowski SJ (2018). J Comput Chem 39:472–480CrossRefGoogle Scholar
  26. 26.
    Bauzá A, Frontera A (2015). Angew Chem Int Ed 54:7340–7343CrossRefGoogle Scholar
  27. 27.
    Bauzá A, Frontera A (2015). ChemPhysChem 16:3625–3630CrossRefGoogle Scholar
  28. 28.
    Frontera A, Bauzá A (2017). Phys Chem Chem Phys 19:30063–30068CrossRefGoogle Scholar
  29. 29.
    Clark T, Murray JS, Politzer P (2018). Phys Chem Chem Phys 20:30076–30082CrossRefGoogle Scholar
  30. 30.
    Clark T, Hesselmann A (2018). Phys Chem Chem Phys 20:22849–22855CrossRefGoogle Scholar
  31. 31.
    Bauzá A, Mooibroek TJ, Frontera A (2015). ChemPhysChem 16:2496–2517CrossRefGoogle Scholar
  32. 32.
    Bauzá A, Frontera A (2015). Chem Phys Chem 16:3108–3113CrossRefGoogle Scholar
  33. 33.
    Wang H, Wang W, Jin W (2016). Chem Rev 116:5072–5104CrossRefGoogle Scholar
  34. 34.
    Lehn JM (2002). Proc Natl Acad Sci U S A 99:4763–4768CrossRefGoogle Scholar
  35. 35.
    Mahadevi AS, Sastry GN (2016). Chem Rev 116:2775–2825CrossRefGoogle Scholar
  36. 36.
    Grabowski SJ (2014). Phys Chem Chem Phys 16:1824–1834CrossRefGoogle Scholar
  37. 37.
    Gargari MS, Stilinović V, Bauzá A, Frontera A, McArdle P, Derveer DV, Ng SW, Mahmoudi G (2015). Chem Eur J 21:17951–17958CrossRefGoogle Scholar
  38. 38.
    Mahmoudi G, Bauzá A, Amini M, Molins E, Mague JT, Frontera A (2016). Dalton Trans 45:10708–10716CrossRefGoogle Scholar
  39. 39.
    Marín-Luna M, Alkorta I, Elguero J (2016). J Phys Chem A 120:648–656CrossRefGoogle Scholar
  40. 40.
    Gholipour A (2018). Struct Chem 29:1255–126336CrossRefGoogle Scholar
  41. 41.
    McDowell SAC, Joseph JA (2014). Phys Chem Chem Phys 16:10854–10860CrossRefGoogle Scholar
  42. 42.
    Esrafili MD, Nurazar R, Mohammadian-Sabet F (2015). Mol Phys 113:3703–3711CrossRefGoogle Scholar
  43. 43.
    Yourdkhani S, Korona T, Hadipour NL (2015). J Comput Chem 36:2412–2428CrossRefGoogle Scholar
  44. 44.
    Wei Y, Cheng J, Li W, Li Q (2017). RSC Adv 7:46321–46328CrossRefGoogle Scholar
  45. 45.
    Xu H, Cheng J, Yang X, Liu Z, Bo X, Li Q (2017). RSC Adv 7:21713–21720CrossRefGoogle Scholar
  46. 46.
    Xu HL, Cheng JB, Yang X, Liu ZB, Li WZ, Li QM (2017). ChemPhysChem 18:2442–2450CrossRefGoogle Scholar
  47. 47.
    Li W, Zeng Y, Li X, Sun Z, Meng L (2016). Phys Chem Chem Phys 18:24672–24680CrossRefGoogle Scholar
  48. 48.
    Tang Q, Li Q (2014). Comput Theor Chem 1050:51–57CrossRefGoogle Scholar
  49. 49.
    Guo X, Liu YW, Li QZ, Li WZ, Cheng JB (2015). Chem Phys Lett 620:7–12CrossRefGoogle Scholar
  50. 50.
    Vatanparast M, Parvini E, Bahadori A (2016). Mol Phys 114:1478–1484CrossRefGoogle Scholar
  51. 51.
    Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision A. 02. Gaussian, WallingfordGoogle Scholar
  52. 52.
    Boys SF, Bernardi FD (1970). Mol Phys 19:553–566CrossRefGoogle Scholar
  53. 53.
    Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010). J Mol Model 16:1679–1691CrossRefGoogle Scholar
  54. 54.
    Bader RFW (1991). Chem Rev 91:893–928CrossRefGoogle Scholar
  55. 55.
    Becke A, Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley, New YorkGoogle Scholar
  56. 56.
    Biegler-Kôning FJ, Derdau R, Bayles D, Bader RFW (2002) AIM2000, version 2.0. University of Applied Science, BielefeldGoogle Scholar
  57. 57.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010). J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  58. 58.
    Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011). J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  59. 59.
    Lu T, Chen F (2012). J Comput Chem 33:580–592CrossRefGoogle Scholar
  60. 60.
    Humphrey W, Dalke A, Schulten K (1996). J Mol Graph 14:33–38CrossRefGoogle Scholar
  61. 61.
    Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor—acceptor perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. 62.
    Su P, Li H (2009). J Chem Phys 131:014102CrossRefGoogle Scholar
  63. 63.
    Michael WS, Kim KB, Jerry AB et al (1993). J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  64. 64.
    Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011). Angew Chem Int Ed 50:9564–9583CrossRefGoogle Scholar
  65. 65.
    Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011). Angew Chem 123:9736–9756CrossRefGoogle Scholar
  66. 66.
    Zhang XY, Zeng YL, Li XY, Meng LP, Zheng SJ (2011). Struct Chem 22:567–576CrossRefGoogle Scholar
  67. 67.
    Li W, Zeng YL, Li XY, Sun Z, Meng LP (2015). J Comput Chem 36:1349–1358CrossRefGoogle Scholar
  68. 68.
    Grabowski SJ (2017). Crystals 7:43–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Material SciencesHebei Normal UniversityShijiaZhuangPeople’s Republic of China
  2. 2.National Demonstration Center for Experimental ChemistryHebei Normal UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations