Structural Chemistry

, Volume 30, Issue 5, pp 1873–1885 | Cite as

Computational insights into the electronic structure of TCNDQ and TCNP: the effect of Si substitution

  • Steven M. Maley
  • Robert C MawhinneyEmail author
Original Research


Tetracyanodiphenoquinodimethane (TCNDQ) and tetracyanopyrenoquinodimethane (TCNP) are larger cyanocarbons related to tetracyanoethylene (TCNE) and tetracyanoquinodimethane (TCNQ). In contrast to TCNE and TCNQ, there are limited studies detailing the electronic structure of TCNDQ and TCNP. In this work, we provide structural characterization and adiabatic electron affinities (AEAs) of TCNDQ and TCNP. The isovalent substitution strategy (swapping C for Si) discussed previously by our group is applied, and the effect of Si substitution on the potential energy surfaces and AEAs of the parent compounds is assessed. Si substitution enhances the AEAs and stabilizes the triplet diradical ground state of both compounds. These findings provide missing information regarding the electronic structure of TCNDQ and TCNP and further demonstrate the effectiveness of the isovalent substitution strategy.


Tetracyanodiphenoquinodimethane (TCNDQ) Tetracyanopyrenoquinodimethane (TCNP) Si substitution Adiabatic electron affinities Density functional theory Symmetry breaking 



The authors would like to thank SHARCNET and Compute Canada for computational resources.

Funding information

SMM was supported by a grant through Indigenous and Northern Affairs Canada (INAC) Post-Secondary Student Support Program. Finally, the authors was supported by Lakehead University and the Natural Sciences and Engineering Research Council (NSERC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11224_2018_1265_MOESM1_ESM.pdf (3.2 mb)
ESM 1 (PDF 3242 kb)


  1. 1.
    Thiele J, Balhorn H (1904). Chem Ber 37:1756–1758CrossRefGoogle Scholar
  2. 2.
    Tschitchitbabin AE (1907). Chem. Ber. 40:1810–1819CrossRefGoogle Scholar
  3. 3.
    Ravat P, Baumgarten M (2014). Phys Chem Chem Phys 17(2):983–991CrossRefGoogle Scholar
  4. 4.
    Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa SI, Takahasi H, Nakano M (2007). Angew Chem Int Ed 46:3544–3546CrossRefGoogle Scholar
  5. 5.
    Chikamatsu M, Mikami T, Chisaka J, Yoshida Y, Azumi R, Yase K (2007). Appl Phys Lett 91:043506CrossRefGoogle Scholar
  6. 6.
    Son Y, Cohen ML, Louie SG (2006). Phys Rev Lett 97:216803CrossRefGoogle Scholar
  7. 7.
    Morita Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Soto K, Takui T (2011). Nat Mater 10:947–951CrossRefGoogle Scholar
  8. 8.
    Long RE, Sparks RA, Trueblood KN (1965). Acta Cryst 18:932CrossRefGoogle Scholar
  9. 9.
    Hoekstra A, Spoelder T, Vos A (1972). Acta Cryst B28:14CrossRefGoogle Scholar
  10. 10.
    Kistenmacher TJ, Phillips TE, Cowan DO (1974). Acta Cryst B30:763CrossRefGoogle Scholar
  11. 11.
    Miller JS, Zhang JH, Reiff WM, Dixon DA, Preston LD, Reis Jr AH, Gebert E, Extine M, Troup J, Epstein AJ, Ward, and M. D (1987). J Phys Chem 91:4344–4360CrossRefGoogle Scholar
  12. 12.
    Milian B, Pou-Amerigo R, Viruela R, Orti EJ (2004). Mol Str (Theochem) 709:97–102CrossRefGoogle Scholar
  13. 13.
    Milian B, Pou-Amerigo R, Viruela R, Orti E (2004). Chem Phys Lett 391:148–151CrossRefGoogle Scholar
  14. 14.
    Maley SM, Esau C, Mawhinney RC (2018). Struct Chem 30(1):289–301Google Scholar
  15. 15.
    Zhu G-Z, Wang L-S (2015). J Chem Phys 143:221102CrossRefGoogle Scholar
  16. 16.
    Addison AW, Dalal NS, Hoyano Y, Huizinga S, Weiler L (1977). Can J Chem 55:4191–4199CrossRefGoogle Scholar
  17. 17.
    Maxfield M, Bloch AN, Cowan DOJ (1985). Org Chem 50(11):1789–1796CrossRefGoogle Scholar
  18. 18.
    Gerson F, Heckendorn R, Cowan DO, Kini AM, Maxfield M (1983). J Am Chem Soc 105(24):7017–7023CrossRefGoogle Scholar
  19. 19.
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian. Inc., Wallingford CTGoogle Scholar
  20. 20.
    Becke AD (1988). Phys. Rev. A. 38:3098–3100CrossRefGoogle Scholar
  21. 21.
    Lee C, Yang W, Parr RG (1988). Phys. Rev. B 37:785–789CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Truhlar DG (2008). Theor Chem Acct 120:215CrossRefGoogle Scholar
  24. 24.
    Becke ADJ (1993). Chem Phys 98:5648–5652Google Scholar
  25. 25.
    Adamo C, Barone VJ (1999). Chem Phys 110:6158–6159Google Scholar
  26. 26.
    Yanai T, Tew D, Handy N (2004). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  27. 27.
    Baurenschmidt R, Ahlrics R (1996). J Chem Phys 104:9047CrossRefGoogle Scholar
  28. 28.
    AIMAll (Version 17.11.14), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017 (
  29. 29.
    Bader RFW Atoms in Molecules: a quantum theory. Oxford University press, New York. USAGoogle Scholar
  30. 30.
    Grein, F. J. Mol. Str. (Theochem), 2003, 624, 23–28Google Scholar
  31. 31.
    Choi J, Cho DW, Tojo S, Fujitsuka M, Majima T (2015). J Phys Chem A 119:851–856CrossRefGoogle Scholar
  32. 32.
    Campanelli AR, Domenciano A (2013). Struct Chem 24:867–876CrossRefGoogle Scholar
  33. 33.
    Casado J, Burrezo PM, Zafra JL, Navattete JTL (2017). Angew Chem Int Ed 56(9):2250–2259CrossRefGoogle Scholar
  34. 34.
    Chowdhury S, Kebarle P (1986). J Am Chem Soc 108:5423Google Scholar
  35. 35.
    Morinaga M, Nogami T, Mikawa H (1979). Bull Chem Soc Japan 52(12):3739–3740CrossRefGoogle Scholar
  36. 36.
    Fukuda K, Nozawa T, Yotsuyanagi H, Ichinohe M, Sekiguchi A, Masayoshi N (2015). J Phys Chem C 119(2):1188–1193CrossRefGoogle Scholar
  37. 37.
    Tang X, Hu Y, Jia W, Pan R, Deng J, Deng J, He Z, Xiong Z (2018). ACS Appl Mater Interfaces 10(2):1948–1956CrossRefGoogle Scholar
  38. 38.
    Wakasa M, Yago T, Sonoda Y, Katoh R (2018). Comm Chem 1(9)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryLakehead UniversityThunder BayCanada

Personalised recommendations